ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Coupling Electrostatics in the Presence of Dielectric Inhomogeneities

392   0   0.0 ( 0 )
 نشر من قبل Ali Naji
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the strong-coupling (SC) interaction between two like-charged membranes of finite thickness embedded in a medium of higher dielectric constant. A generalized SC theory is applied along with extensive Monte-Carlo simulations to study the image charge effects induced by multiple dielectric discontinuities in this system. These effects lead to strong counterion crowding in the central region of the inter-surface space upon increasing the solvent/membrane dielectric mismatch and change the membrane interactions from attractive to repulsive at small separations. These features agree quantitatively with the SC theory at elevated couplings or dielectric mismatch where the correlation hole around counterions is larger than the thickness of the central counterion layer.

قيم البحث

اقرأ أيضاً

121 - M. Kanduc , M. Trulsson , A. Naji 2009
We compare weak and strong coupling theory of counterion-mediated electrostatic interactions between two asymmetrically charged plates with extensive Monte-Carlo simulations. Analytical results in both weak and strong coupling limits compare excellen tly with simulations in their respective regimes of validity. The system shows a surprisingly rich structure in terms of interactions between the surfaces as well as fundamental qualitative differences in behavior in the weak and the strong coupling limits.
Antagonistic salts are salts which consist of hydrophilic and hydrophobic ions. In a binary mixture of water and organic solvent, these ions preferentially dissolve into different phases. We investigate the effect of an antagonistic salt, tetraphenyl phosphonium chloride PPh$_4$Cl, in a mixture of water and 2,6-lutidine by means of Molecular Dynamics (MD) Simulations. For increasing concentrations of the salt the two-phase region is shrunk and the interfacial tension in reduced, in contrast to what happens when a normal salt is added to such a mixture. The MD simulations allow us to investigate in detail the mechanism behind the reduction of the surface tension. We obtain the ion and composition distributions around the interface and determine the hydrogen bonds in the system and conclude that the addition of salt alter the hydrogen bonding.
We theoretically analyse the hybrid Mie-exciton optical modes arising from the strong coupling of excitons in organic dyes or transition-metal dichalcogenides with the Mie resonances of high-index dielectric nanoparticles. Detailed analytic calculati ons show that silicon--exciton core--shell nanoparticles are characterised by a richness of optical modes which can be tuned through nanoparticle dimensions to produce large anticrossings in the visible or near infrared, comparable to those obtained in plexcitonics. The complex magnetic-excitonic nature of these modes is understood through spectral decomposition into Mie-coefficient contributions, complemented by electric and magnetic near-field profiles. In the frequency range of interest, absorptive losses in silicon are sufficiently low to allow observation of several periods of Rabi oscillations in strongly coupled emitter-particle architectures, as confirmed here by discontinuous Galerkin time-domain calculations for the electromagnetic field beat patterns. These results suggest that Mie resonances in high-index dielectrics are promising alternatives for plasmons in strong-coupling applications in nanophotonics, while the coupling of magnetic and electric modes opens intriguing possibilities for external control.
Purpose: To develop schemes that deliver faithful 2D slices near field heterogeneities of the kind arising from non-ferromagnetic metal implants, with reduced artifacts and shorter scan times. Methods: An excitation scheme relying on cross-term spa tio-temporal encoding (xSPEN) was used as basis for developing the new inhomogeneity-insensitive, slice-selective pulse scheme. The resulting Fully refOCUSED cross-term SPatiotemporal ENcoding (FOCUSED-xSPEN) approach involved four adiabatic sweeps. The method was evaluated in silico, in vitro and in vivo using mice models, and compared against a number of existing and of novel alternatives based on both conventional and swept RF pulses, including an analogous method based on LASERs selectivity spatial selectivity. Results: Calculations and experiments confirmed that multi-sweep derivatives of xSPEN and LASER can deliver localized excitation profiles, centered at the intended positions and endowed with enhanced immunity to B0 and B1 distortions. This, however, is achieved at the expense of higher SAR than non-swept counterparts. Furthermore, single-shot FOCUSED-xSPEN and LASER profiles covered limited off-resonance ranges. This could be extended to bands covering arbitrary off-resonance values with uniform slice widths, by looping the experiments over a number of scans possessing suitable transmission and reception offsets. Conclusions: A series of novel approaches were introduced to select slices near metals, delivering robustness against Bo and B1+ field inhomogeneities.
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا