ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Surprise in Indoor Environments

61   0   0.0 ( 0 )
 نشر من قبل Sebastian Feld
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sebastian Feld




اسأل ChatGPT حول البحث

This paper proposes a novel method to identify unexpected structures in 2D floor plans using the concept of Bayesian Surprise. Taking into account that a persons expectation is an important aspect of the perception of space, we exploit the theory of Bayesian Surprise to robustly model expectation and thus surprise in the context of building structures. We use Isovist Analysis, which is a popular space syntax technique, to turn qualitative object attributes into quantitative environmental information. Since isovists are location-specific patterns of visibility, a sequence of isovists describes the spatial perception during a movement along multiple points in space. We then use Bayesian Surprise in a feature space consisting of these isovist readings. To demonstrate the suitability of our approach, we take snapshots of an agents local environment to provide a short list of images that characterize a traversed trajectory through a 2D indoor environment. Those fingerprints represent surprising regions of a tour, characterize the traversed map and enable indoor LBS to focus more on important regions. Given this idea, we propose to use surprise as a new dimension of context in indoor location-based services (LBS). Agents of LBS, such as mobile robots or non-player characters in computer games, may use the context surprise to focus more on important regions of a map for a better use or understanding of the floor plan.


قيم البحث

اقرأ أيضاً

Every living organism struggles against disruptive environmental forces to carve out and maintain an orderly niche. We propose that such a struggle to achieve and preserve order might offer a principle for the emergence of useful behaviors in artific ial agents. We formalize this idea into an unsupervised reinforcement learning method called surprise minimizing reinforcement learning (SMiRL). SMiRL alternates between learning a density model to evaluate the surprise of a stimulus, and improving the policy to seek more predictable stimuli. The policy seeks out stable and repeatable situations that counteract the environments prevailing sources of entropy. This might include avoiding other hostile agents, or finding a stable, balanced pose for a bipedal robot in the face of disturbance forces. We demonstrate that our surprise minimizing agents can successfully play Tetris, Doom, control a humanoid to avoid falls, and navigate to escape enemies in a maze without any task-specific reward supervision. We further show that SMiRL can be used together with standard task rewards to accelerate reward-driven learning.
Application of deep neural networks to medical imaging tasks has in some sense become commonplace. Still, a thorn in the side of the deep learning movement is the argument that deep networks are prone to overfitting and are thus unable to generalize well when datasets are small (as is common in medical imaging tasks). One way to bolster confidence is to provide mathematical guarantees, or bounds, on network performance after training which explicitly quantify the possibility of overfitting. In this work, we explore recent advances using the PAC-Bayesian framework to provide bounds on generalization error for large (stochastic) networks. While previous efforts focus on classification in larger natural image datasets (e.g., MNIST and CIFAR-10), we apply these techniques to both classification and segmentation in a smaller medical imagining dataset: the ISIC 2018 challenge set. We observe the resultant bounds are competitive compared to a simpler baseline, while also being more explainable and alleviating the need for holdout sets.
Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching m arginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.
We introduce a probabilistic robustness measure for Bayesian Neural Networks (BNNs), defined as the probability that, given a test point, there exists a point within a bounded set such that the BNN prediction differs between the two. Such a measure c an be used, for instance, to quantify the probability of the existence of adversarial examples. Building on statistical verification techniques for probabilistic models, we develop a framework that allows us to estimate probabilistic robustness for a BNN with statistical guarantees, i.e., with a priori error and confidence bounds. We provide experimental comparison for several approximate BNN inference techniques on image classification tasks associated to MNIST and a two-class subset of the GTSRB dataset. Our results enable quantification of uncertainty of BNN predictions in adversarial settings.
The paper proposes a multi-modal sensor fusion algorithm that fuses WiFi, IMU, and floorplan information to infer an accurate and dense location history in indoor environments. The algorithm uses 1) an inertial navigation algorithm to estimate a rela tive motion trajectory from IMU sensor data; 2) a WiFi-based localization API in industry to obtain positional constraints and geo-localize the trajectory; and 3) a convolutional neural network to refine the location history to be consistent with the floorplan. We have developed a data acquisition app to build a new dataset with WiFi, IMU, and floorplan data with ground-truth positions at 4 university buildings and 3 shopping malls. Our qualitative and quantitative evaluations demonstrate that the proposed system is able to produce twice as accurate and a few orders of magnitude denser location history than the current standard, while requiring minimal additional energy consumption. We will publicly share our code, data and models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا