ﻻ يوجد ملخص باللغة العربية
Mortality prediction of diverse rare diseases using electronic health record (EHR) data is a crucial task for intelligent healthcare. However, data insufficiency and the clinical diversity of rare diseases make it hard for directly training deep learning models on individual disease data or all the data from different diseases. Mortality prediction for these patients with different diseases can be viewed as a multi-task learning problem with insufficient data and large task number. But the tasks with little training data also make it hard to train task-specific modules in multi-task learning models. To address the challenges of data insufficiency and task diversity, we propose an initialization-sharing multi-task learning method (Ada-Sit) which learns the parameter initialization for fast adaptation to dynamically measured similar tasks. We use Ada-Sit to train long short-term memory networks (LSTM) based prediction models on longitudinal EHR data. And experimental results demonstrate that the proposed model is effective for mortality prediction of diverse rare diseases.
Multi-task learning (MTL) can improve performance on a task by sharing representations with one or more related auxiliary-tasks. Usually, MTL-networks are trained on a composite loss function formed by a constant weighted combination of the separate
Although recent multi-task learning methods have shown to be effective in improving the generalization of deep neural networks, they should be used with caution for safety-critical applications, such as clinical risk prediction. This is because even
Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles. However, it is largely unclear how to efficiently discover such a set of roles. To solve this problem, we propose to first deco
Some tasks, such as surface normals or single-view depth estimation, require per-pixel ground truth that is difficult to obtain on real images but easy to obtain on synthetic. However, models learned on synthetic images often do not generalize well t
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously. However, it is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other. Recently, a no