ﻻ يوجد ملخص باللغة العربية
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously. However, it is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other. Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization. In this paper, we generalize this idea and propose a novel Pareto multi-task learning algorithm (Pareto MTL) to find a set of well-distributed Pareto solutions which can represent different trade-offs among different tasks. The proposed algorithm first formulates a multi-task learning problem as a multiobjective optimization problem, and then decomposes the multiobjective optimization problem into a set of constrained subproblems with different trade-off preferences. By solving these subproblems in parallel, Pareto MTL can find a set of well-representative Pareto optimal solutions with different trade-off among all tasks. Practitioners can easily select their preferred solution from these Pareto solutions, or use different trade-off solutions for different situations. Experimental results confirm that the proposed algorithm can generate well-representative solutions and outperform some state-of-the-art algorithms on many multi-task learning applications.
A multi-task learning (MTL) system aims at solving multiple related tasks at the same time. With a fixed model capacity, the tasks would be conflicted with each other, and the system usually has to make a trade-off among learning all of them together
Multi-Task Learning (MTL) is a well-established paradigm for training deep neural network models for multiple correlated tasks. Often the task objectives conflict, requiring trade-offs between them during model building. In such cases, MTL models can
The reinforcement learning community has made great strides in designing algorithms capable of exceeding human performance on specific tasks. These algorithms are mostly trained one task at the time, each new task requiring to train a brand new agent
We present a novel methodology to jointly perform multi-task learning and infer intrinsic relationship among tasks by an interpretable and sparse graph. Unlike existing multi-task learning methodologies, the graph structure is not assumed to be known
Multi-task learning (MTL) can improve performance on a task by sharing representations with one or more related auxiliary-tasks. Usually, MTL-networks are trained on a composite loss function formed by a constant weighted combination of the separate