ﻻ يوجد ملخص باللغة العربية
In this work, we consider the problem of secure multi-party computation (MPC), consisting of $Gamma$ sources, each has access to a large private matrix, $N$ processing nodes or workers, and one data collector or master. The master is interested in the result of a polynomial function of the input matrices. Each source sends a randomized functions of its matrix, called as its share, to each worker. The workers process their shares in interaction with each other, and send some results to the master such that it can derive the final result. There are several constraints: (1) each worker can store a function of each input matrix, with the size of $frac{1}{m}$ fraction of that input matrix, (2) up to $t$ of the workers, for some integer $t$, are adversary and may collude to gain information about the private inputs or can do malicious actions to make the final result incorrect. The objective is to design an MPC scheme with the minimum number the workers, called the recovery threshold, such that the final result is correct, workers learn no information about the input matrices, and the master learns nothing beyond the final result. In this paper, we propose an MPC scheme that achieves the recovery threshold of $3t+2m-1$ workers, which is order-wise less than the recovery threshold of the conventional methods. The challenge in dealing with this set up is that when nodes interact with each other, the malicious messages that adversarial nodes generate propagate through the system, and can mislead the honest nodes. To deal with this challenge, we design some subroutines that can detect erroneous messages, and correct or drop them.
Quantum conference is a process of securely exchanging messages between three or more parties, using quantum resources. A Measurement Device Independent Quantum Dialogue (MDI-QD) protocol, which is secure against information leakage, has been propose
Secure multi-party computation (MPC) allows parties to perform computations on data while keeping that data private. This capability has great potential for machine-learning applications: it facilitates training of machine-learning models on private
We consider the task of secure multi-party distributed quantum computation on a quantum network. We propose a protocol based on quantum error correction which reduces the number of necessary qubits. That is, each of the $n$ nodes in our protocol requ
The multi-access variant of the coded caching problem in the presence of an external wiretapper is investigated . A multi-access coded caching scheme with $K$ users, $K$ caches and $N$ files, where each user has access to $L$ neighbouring caches in a
We consider the secure computation problem in a minimal model, where Alice and Bob each holds an input and wish to securely compute a function of their inputs at Carol without revealing any additional information about the inputs. For this minimal se