ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Access Coded Caching with Secure Delivery

105   0   0.0 ( 0 )
 نشر من قبل B.Sundar Rajan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The multi-access variant of the coded caching problem in the presence of an external wiretapper is investigated . A multi-access coded caching scheme with $K$ users, $K$ caches and $N$ files, where each user has access to $L$ neighbouring caches in a cyclic wrap-around manner, is proposed, which is secure against the wiretappers. Each transmission in the conventional insecure scheme will be now encrypted by a random key. The proposed scheme uses a novel technique for the key placement in the caches. It is also shown that the proposed secure multi-access coded caching scheme is within a constant multiplicative factor from the information-theoretic optimal rate for $Lgeq frac{K}{2}$ and $Ngeq 2K$.



قيم البحث

اقرأ أيضاً

The demand private coded caching problem in a multi-access network with $K$ users and $K$ caches, where each user has access to $L$ neighbouring caches in a cyclic wrap-around manner, is studied. The additional constraint imposed is that one user sho uld not get any information regarding the demands of the remaining users. A lifting construction of demand private multi-access coded caching scheme from conventional, non-private multi-access scheme is introduced. The demand-privacy for a user is ensured by placing some additional textit{keys} in a set of caches called the textit{private set} of that user. For a given $K$ and $L$, a technique is also devised to find the private sets of the users.
We study downlink beamforming in a single-cell network with a multi-antenna base station serving cache-enabled users. Assuming a library of files with a common rate, we formulate the minimum transmit power with proactive caching and coded delivery as a non-convex optimization problem. While this multiple multicast problem can be efficiently solved by successive convex approximation (SCA), the complexity of the problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users. We introduce a low-complexity alternative through time-sharing that limits the number of subfiles received by a user in each time slot. We then consider the joint design of beamforming and content delivery with sparsity constraints to limit the number of subfiles received by a user in each time slot. Numerical simulations show that the low-complexity scheme has only a small performance gap to that obtained by solving the joint problem with sparsity constraints, and outperforms state-of-the-art results at all signal-to-noise ratio (SNR) and rate values with a sufficient number of transmit antennas. A lower bound on the achievable degrees-of-freedom (DoF) of the low-complexity scheme is derived to characterize its performance in the high SNR regime.
We consider multi-access coded caching problem introduced by Hachem et.al., where each user has access to $L$ neighboring caches in a cyclic wrap-around fashion. We focus on the deterministic schemes for a specific class of multi-access coded caching problem based on the concept of PDA. We construct new PDAs which specify the delivery scheme for the specific class of multi-access coded caching problem discussed in this paper. For the proposed scheme, the coding gain is larger than that of the state-of-the-art while the sub-packetization level varies only linearly with the number of users. Hence, we achieve a lower transmission rate with the least sub-packetization level compared to the existing schemes.
This paper studies device to device (D2D) coded-caching with information theoretic security guarantees. A broadcast network consisting of a server, which has a library of files, and end users equipped with cache memories, is considered. Information t heoretic security guarantees for confidentiality are imposed upon the files. The server populates the end user caches, after which D2D communications enable the delivery of the requested files. Accordingly, we require that a user must not have access to files it did not request, i.e., secure caching. First, a centralized coded caching scheme is provided by jointly optimizing the cache placement and delivery policies. Next, a decentralized coded caching scheme is developed that does not require the knowledge of the number of active users during the caching phase. Both schemes utilize non-perfect secret sharing and one-time pad keying, to guarantee secure caching. Furthermore, the proposed schemes provide secure delivery as a side benefit, i.e., any external entity which overhears the transmitted signals during the delivery phase cannot obtain any information about the database files. The proposed schemes provide the achievable upper bound on the minimum delivery sum rate. Lower bounds on the required transmission sum rate are also derived using cut-set arguments indicating the multiplicative gap between the lower and upper bounds. Numerical results indicate that the gap vanishes with increasing memory size. Overall, the work demonstrates the effectiveness of D2D communications in cache-aided systems even when confidentiality constraints are imposed at the participating nodes and against external eavesdroppers.
Recently multi-access coded caching schemes with number of users different from the number of caches obtained from a special case of resolvable designs called Cross Resolvable Designs (CRDs) have been reported and a new performance metric called rate -per-user has been introduced cite{KNRarXiv}. In this paper we present a generalization of this work resulting in multi-access coded caching schemes with improved rate-per-user.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا