ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Visually Navigate in Photorealistic Environments Without any Supervision

120   0   0.0 ( 0 )
 نشر من قبل Piotr Bojanowski
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning to navigate in a realistic setting where an agent must rely solely on visual inputs is a challenging task, in part because the lack of position information makes it difficult to provide supervision during training. In this paper, we introduce a novel approach for learning to navigate from image inputs without external supervision or reward. Our approach consists of three stages: learning a good representation of first-person views, then learning to explore using memory, and finally learning to navigate by setting its own goals. The model is trained with intrinsic rewards only so that it can be applied to any environment with image observations. We show the benefits of our approach by training an agent to navigate challenging photo-realistic environments from the Gibson dataset with RGB inputs only.



قيم البحث

اقرأ أيضاً

Learning to navigate in complex environments with dynamic elements is an important milestone in developing AI agents. In this work we formulate the navigation question as a reinforcement learning problem and show that data efficiency and task perform ance can be dramatically improved by relying on additional auxiliary tasks leveraging multimodal sensory inputs. In particular we consider jointly learning the goal-driven reinforcement learning problem with auxiliary depth prediction and loop closure classification tasks. This approach can learn to navigate from raw sensory input in complicated 3D mazes, approaching human-level performance even under conditions where the goal location changes frequently. We provide detailed analysis of the agent behaviour, its ability to localise, and its network activity dynamics, showing that the agent implicitly learns key navigation abilities.
How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. navigating a complex environment)? What are the consequences of not utilizing such visual priors in lea rning? We study these questions by integrating a generic perceptual skill set (a distance estimator, an edge detector, etc.) within a reinforcement learning framework (see Fig. 1). This skill set (mid-level vision) provides the policy with a more processed state of the world compared to raw images. Our large-scale study demonstrates that using mid-level vision results in policies that learn faster, generalize better, and achieve higher final performance, when compared to learning from scratch and/or using state-of-the-art visual and non-visual representation learning methods. We show that conventional computer vision objectives are particularly effective in this regard and can be conveniently integrated into reinforcement learning frameworks. Finally, we found that no single visual representation was universally useful for all downstream tasks, hence we computationally derive a task-agnostic set of representations optimized to support arbitrary downstream tasks.
Autonomous navigation is an essential capability of smart mobility for mobile robots. Traditional methods must have the environment map to plan a collision-free path in workspace. Deep reinforcement learning (DRL) is a promising technique to realize the autonomous navigation task without a map, with which deep neural network can fit the mapping from observation to reasonable action through explorations. It should not only memorize the trained target, but more importantly, the planner can reason out the unseen goal. We proposed a new motion planner based on deep reinforcement learning that can arrive at new targets that have not been trained before in the indoor environment with RGB image and odometry only. The model has a structure of stacked Long Short-Term memory (LSTM). Finally, experiments were implemented in both simulated and real environments. The source code is available: https://github.com/marooncn/navbot.
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to t rain reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
When automatically generating a sentence description for an image or video, it often remains unclear how well the generated caption is grounded, that is whether the model uses the correct image regions to output particular words, or if the model is h allucinating based on priors in the dataset and/or the language model. The most common way of relating image regions with words in caption models is through an attention mechanism over the regions that are used as input to predict the next word. The model must therefore learn to predict the attentional weights without knowing the word it should localize. This is difficult to train without grounding supervision since recurrent models can propagate past information and there is no explicit signal to force the captioning model to properly ground the individual decoded words. In this work, we help the model to achieve this via a novel cyclical training regimen that forces the model to localize each word in the image after the sentence decoder generates it, and then reconstruct the sentence from the localized image region(s) to match the ground-truth. Our proposed framework only requires learning one extra fully-connected layer (the localizer), a layer that can be removed at test time. We show that our model significantly improves grounding accuracy without relying on grounding supervision or introducing extra computation during inference, for both image and video captioning tasks. Code is available at https://github.com/chihyaoma/cyclical-visual-captioning .

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا