ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Neural Language Models for Human Tacit Assumptions

108   0   0.0 ( 0 )
 نشر من قبل Nathaniel Weir
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans carry stereotypic tacit assumptions (STAs) (Prince, 1978), or propositional beliefs about generic concepts. Such associations are crucial for understanding natural language. We construct a diagnostic set of word prediction prompts to evaluate whether recent neural contextualized language models trained on large text corpora capture STAs. Our prompts are based on human responses in a psychological study of conceptual associations. We find models to be profoundly effective at retrieving concepts given associated properties. Our results demonstrate empirical evidence that stereotypic conceptual representations are captured in neural models derived from semi-supervised linguistic exposure.

قيم البحث

اقرأ أيضاً

In this work, we propose a new language modeling paradigm that has the ability to perform both prediction and moderation of information flow at multiple granularities: neural lattice language models. These models construct a lattice of possible paths through a sentence and marginalize across this lattice to calculate sequence probabilities or optimize parameters. This approach allows us to seamlessly incorporate linguistic intuitions - including polysemy and existence of multi-word lexical items - into our language model. Experiments on multiple language modeling tasks show that English neural lattice language models that utilize polysemous embeddings are able to improve perplexity by 9.95% relative to a word-level baseline, and that a Chinese model that handles multi-character tokens is able to improve perplexity by 20.94% relative to a character-level baseline.
83 - Onkar Pandit , Yufang Hou 2021
We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations in-comparison with the lower an d middle layers, also, few specific attention heads concentrate consistently on bridging. More importantly, we consider language models as a whole in our second approach where bridging anaphora resolution is formulated as a masked token prediction task (Of-Cloze test). Our formulation produces optimistic results without any fine-tuning, which indicates that pre-trained language models substantially capture bridging inference. Our further investigation shows that the distance between anaphor-antecedent and the context provided to language models play an important role in the inference.
Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. The human ability to understand and communicate about situations emerges gradual ly from experience and depends on domain-general principles of biological neural networks: connection-based learning, distributed representation, and context-sensitive, mutual constraint satisfaction-based processing. Current artificial language processing systems rely on the same domain general principles, embodied in artificial neural networks. Indeed, recent progress in this field depends on emph{query-based attention}, which extends the ability of these systems to exploit context and has contributed to remarkable breakthroughs. Nevertheless, most current models focus exclusively on language-internal tasks, limiting their ability to perform tasks that depend on understanding situations. These systems also lack memory for the contents of prior situations outside of a fixed contextual span. We describe the organization of the brains distributed understanding system, which includes a fast learning system that addresses the memory problem. We sketch a framework for future models of understanding drawing equally on cognitive neuroscience and artificial intelligence and exploiting query-based attention. We highlight relevant current directions and consider further developments needed to fully capture human-level language understanding in a computational system.
Saliency methods are widely used to interpret neural network predictions, but different variants of saliency methods often disagree even on the interpretations of the same prediction made by the same model. In these cases, how do we identify when are these interpretations trustworthy enough to be used in analyses? To address this question, we conduct a comprehensive and quantitative evaluation of saliency methods on a fundamental category of NLP models: neural language models. We evaluate the quality of prediction interpretations from two perspectives that each represents a desirable property of these interpretations: plausibility and faithfulness. Our evaluation is conducted on four different datasets constructed from the existing human annotation of syntactic and semantic agreements, on both sentence-level and document-level. Through our evaluation, we identified various ways saliency methods could yield interpretations of low quality. We recommend that future work deploying such methods to neural language models should carefully validate their interpretations before drawing insights.
Reward learning enables the application of reinforcement learning (RL) to tasks where reward is defined by human judgment, building a model of reward by asking humans questions. Most work on reward learning has used simulated environments, but comple x information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and safe for real-world tasks. In this paper, we build on advances in generative pretraining of language models to apply reward learning to four natural language tasks: continuing text with positive sentiment or physically descriptive language, and summarization tasks on the TL;DR and CNN/Daily Mail datasets. For stylistic continuation we achieve good results with only 5,000 comparisons evaluated by humans. For summarization, models trained with 60,000 comparisons copy whole sentences from the input but skip irrelevant preamble; this leads to reasonable ROUGE scores and very good performance according to our human labelers, but may be exploiting the fact that labelers rely on simple heuristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا