ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Lattice Language Models

115   0   0.0 ( 0 )
 نشر من قبل Jacob Buckman
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose a new language modeling paradigm that has the ability to perform both prediction and moderation of information flow at multiple granularities: neural lattice language models. These models construct a lattice of possible paths through a sentence and marginalize across this lattice to calculate sequence probabilities or optimize parameters. This approach allows us to seamlessly incorporate linguistic intuitions - including polysemy and existence of multi-word lexical items - into our language model. Experiments on multiple language modeling tasks show that English neural lattice language models that utilize polysemous embeddings are able to improve perplexity by 9.95% relative to a word-level baseline, and that a Chinese model that handles multi-character tokens is able to improve perplexity by 20.94% relative to a character-level baseline.

قيم البحث

اقرأ أيضاً

We propose Diverse Embedding Neural Network (DENN), a novel architecture for language models (LMs). A DENNLM projects the input word history vector onto multiple diverse low-dimensional sub-spaces instead of a single higher-dimensional sub-space as i n conventional feed-forward neural network LMs. We encourage these sub-spaces to be diverse during network training through an augmented loss function. Our language modeling experiments on the Penn Treebank data set show the performance benefit of using a DENNLM.
70 - Simeng Sun , Mohit Iyyer 2021
Recent progress in language modeling has been driven not only by advances in neural architectures, but also through hardware and optimization improvements. In this paper, we revisit the neural probabilistic language model (NPLM) of~citet{Bengio2003AN P}, which simply concatenates word embeddings within a fixed window and passes the result through a feed-forward network to predict the next word. When scaled up to modern hardware, this model (despite its many limitations) performs much better than expected on word-level language model benchmarks. Our analysis reveals that the NPLM achieves lower perplexity than a baseline Transformer with short input contexts but struggles to handle long-term dependencies. Inspired by this result, we modify the Transformer by replacing its first self-attention layer with the NPLMs local concatenation layer, which results in small but consistent perplexity decreases across three word-level language modeling datasets.
Saliency methods are widely used to interpret neural network predictions, but different variants of saliency methods often disagree even on the interpretations of the same prediction made by the same model. In these cases, how do we identify when are these interpretations trustworthy enough to be used in analyses? To address this question, we conduct a comprehensive and quantitative evaluation of saliency methods on a fundamental category of NLP models: neural language models. We evaluate the quality of prediction interpretations from two perspectives that each represents a desirable property of these interpretations: plausibility and faithfulness. Our evaluation is conducted on four different datasets constructed from the existing human annotation of syntactic and semantic agreements, on both sentence-level and document-level. Through our evaluation, we identified various ways saliency methods could yield interpretations of low quality. We recommend that future work deploying such methods to neural language models should carefully validate their interpretations before drawing insights.
The Software Naturalness hypothesis argues that programming languages can be understood through the same techniques used in natural language processing. We explore this hypothesis through the use of a pre-trained transformer-based language model to p erform code analysis tasks. Present approaches to code analysis depend heavily on features derived from the Abstract Syntax Tree (AST) while our transformer-based language models work on raw source code. This work is the first to investigate whether such language models can discover AST features automatically. To achieve this, we introduce a sequence labeling task that directly probes the language models understanding of AST. Our results show that transformer based language models achieve high accuracy in the AST tagging task. Furthermore, we evaluate our model on a software vulnerability identification task. Importantly, we show that our approach obtains vulnerability identification results comparable to graph based approaches that rely heavily on compilers for feature extraction.
We present a new theoretical perspective of data noising in recurrent neural network language models (Xie et al., 2017). We show that each variant of data noising is an instance of Bayesian recurrent neural networks with a particular variational dist ribution (i.e., a mixture of Gaussians whose weights depend on statistics derived from the corpus such as the unigram distribution). We use this insight to propose a more principled method to apply at prediction time and propose natural extensions to data noising under the variational framework. In particular, we propose variational smoothing with tied input and output embedding matrices and an element-wise variational smoothing method. We empirically verify our analysis on two benchmark language modeling datasets and demonstrate performance improvements over existing data noising methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا