ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dynamics and a nearly continuous magnetic phase transition in an entropy-stabilized oxide antiferromagnet

100   0   0.0 ( 0 )
 نشر من قبل Benjamin Frandsen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic order and the spin dynamics in the antiferromagnetic entropy-stabilized oxide (Mg$_{0.2}$Co$_{0.2}$Ni$_{0.2}$Cu$_{0.2}$Zn$_{0.2}$)O (MgO-ESO) have been studied using muon spin relaxation ($mu$SR) and inelastic neutron scattering. We find that antiferromagnetic order develops gradually in the sample volume as it is cooled below 140 K, becoming fully ordered around 100 K. The spin dynamics show a critical slowing down in the vicinity of the transition, and the magnetic order parameter grows continuously in the ordered state. These results indicate that the antiferromagnetic transition is continuous but proceeds with a Gaussian distribution of ordering temperatures. The magnetic contribution to the specific heat determined from inelastic neutron scattering likewise shows a broad feature centered around 120 K. High-resolution inelastic neutron scattering further reveals an initially gapped spectrum at low temperature which sees an increase in a quasielastic contribution upon heating until the ordering temperature.



قيم البحث

اقرأ أيضاً

Detailed spin-wave spectra of magneto-electric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase with ordering temperature 20.8 K. An anomalous low-energy mode is observed at the modulation vector of the incommensurate (IC) AF phase appearing above the 20.8 K. A linear spin-wave model based on Heisenberg exchange couplings and single ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange interaction and causes the IC structure.
The entropy stabilized oxide Mg$_{0.2}$Co$_{0.2}$Ni$_{0.2}$Cu$_{0.2}$Zn$_{0.2}$O exhibits antiferromagnetic order and magnetic excitations, as revealed by recent neutron scattering experiments. This observation raises the question of the nature of sp in wave excitations in such disordered systems. Here, we investigate theoretically the magnetic ground state and the spin-wave excitations using linear spin-wave theory in combination with the supercell approximation to take into account the extreme disorder in this magnetic system. We find that the experimentally observed antiferromagnetic structure can be stabilized by a rhombohedral distortion together with large second nearest neighbor interactions. Our calculations show that the spin-wave spectrum consists of a well-defined low-energy coherent spectrum in the background of an incoherent continuum that extends to higher energies.
Upon excitation with an intense ultrafast laser pulse, a symmetry-broken ground state can undergo a non-equilibrium phase transition through pathways dissimilar from those in thermal equilibrium. Determining the mechanism underlying these photo-induc ed phase transitions (PIPTs) has been a long-standing issue in the study of condensed matter systems. To this end, we investigate the light-induced melting of a unidirectional charge density wave (CDW) material, LaTe$_3$. Using a suite of time-resolved probes, we independently track the amplitude and phase dynamics of the CDW. We find that a quick ($sim,$1$,$ps) recovery of the CDW amplitude is followed by a slower reestablishment of phase coherence. This longer timescale is dictated by the presence of topological defects: long-range order (LRO) is inhibited and is only restored when the defects annihilate. Our results provide a framework for understanding other PIPTs by identifying the generation of defects as a governing mechanism.
Critical behavior is very common in many fields of science and a wide variety of many-body systems exhibit emergent critical phenomena. The beauty of critical phase transitions lies in their scale-free properties, such that the temperature dependence of physical parameters of systems differing at the microscopic scale can be described by the same generic power laws. In this work we establish the critical properties of the antiferromagnetic phase transition in artificial square ice, showing that it belongs to the two-dimensional Ising universality class, which extends the applicability of such concepts from atomistic to mesoscopic magnets. Combining soft x-ray resonant magnetic scattering experiments and Monte Carlo simulations, we characterize the transition to the low temperature long range order expected for the artificial square ice system. By measuring the critical scattering, we provide direct quantitative evidence of a continuous magnetic phase transition, obtaining critical exponents which are compatible with those of the two-dimensional Ising universality class. In addition, by varying the blocking temperature relative to the phase transition temperature, we demonstrate its influence on the out-of-equilibrium dynamics due to critical slowing down at the phase transition.
The compounds, PrCo9Si4 and NdCo9Si4, have been recently reported to exhibit first-order ferromagnetic transitions near 24 K. We have subjected this compound for further characterization by magnetization, heat-capacity and electrical resistivity meas urements at low temperatures in the presence of magnetic fields, particularly to probe magnetocaloric effect and magnetoresistance. The compounds are found to exhibit rather modest magnetocaloric effect at low temperatures peaking at Curie temperature, tracking the behavior of magnetoresistance. The magnetic transition does not appear to be first order in its character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا