ﻻ يوجد ملخص باللغة العربية
The compounds, PrCo9Si4 and NdCo9Si4, have been recently reported to exhibit first-order ferromagnetic transitions near 24 K. We have subjected this compound for further characterization by magnetization, heat-capacity and electrical resistivity measurements at low temperatures in the presence of magnetic fields, particularly to probe magnetocaloric effect and magnetoresistance. The compounds are found to exhibit rather modest magnetocaloric effect at low temperatures peaking at Curie temperature, tracking the behavior of magnetoresistance. The magnetic transition does not appear to be first order in its character.
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram is a result of magnetic and calometric measurements. We demonstrate the appearance of a hysteretic magnetos
Neutron diffraction and magnetization measurements of the magneto refrigerant Mn1+yFe1-yP1-xGex reveal that the ferromagnetic and paramagnetic phases correspond to two very distinct crystal structures, with the magnetic entropy change as a function o
We compute the magnetocaloric effect (MCE) in the GdTX (T=Sc, Ti, Co, Fe; X=Si, Ge) compounds as a function of the temperature and the external magnetic field. To this end we use a density functional theory approach to calculate the exchange-coupling
The interplay of charge, spin, orbital and lattice degrees of freedom has recently received great interest due to its potential to improve the magnetocaloric effect (MCE) for the purpose of magnetic cooling applications. Here we propose a new mechani
We present the results of a comparative analysis of the magnetocaloric effect (MCE) in Pr0.7Sr0.2Ca0.1MnO3, through direct and indirect measurements, using experimentally measured magnetization, specific heat, magnetostriction, resistivity, thermal d