ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling amplitude and phase dynamics of a charge density wave in a photo-induced phase transition

121   0   0.0 ( 0 )
 نشر من قبل Alfred Zong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Upon excitation with an intense ultrafast laser pulse, a symmetry-broken ground state can undergo a non-equilibrium phase transition through pathways dissimilar from those in thermal equilibrium. Determining the mechanism underlying these photo-induced phase transitions (PIPTs) has been a long-standing issue in the study of condensed matter systems. To this end, we investigate the light-induced melting of a unidirectional charge density wave (CDW) material, LaTe$_3$. Using a suite of time-resolved probes, we independently track the amplitude and phase dynamics of the CDW. We find that a quick ($sim,$1$,$ps) recovery of the CDW amplitude is followed by a slower reestablishment of phase coherence. This longer timescale is dictated by the presence of topological defects: long-range order (LRO) is inhibited and is only restored when the defects annihilate. Our results provide a framework for understanding other PIPTs by identifying the generation of defects as a governing mechanism.



قيم البحث

اقرأ أيضاً

295 - A. Gauzzi , A. Sellam , G. Rousse 2014
We report on a systematic study of the structural, magnetic and transport properties of high-purity 1T-VS$_2$ powder samples prepared under high pressure. The results differ notably from those previously obtained by de-intercalating Li from LiVS$_2$. First, no Charge Density Wave (CDW) is found by transmission electron microscopy down to 94 K. Though, textit{ab initio} phonon calculations unveil a latent CDW instability driven by an acoustic phonon softening at the wave vector ${bf q}_{CDW} approx$ (0.21,0.21,0) previously reported in de-intercalated samples. A further indication of latent lattice instability is given by an anomalous expansion of the V-S bond distance at low temperature. Second, infrared optical absorption and electrical resistivity measurements give evidence of non metallic properties, consistent with the observation of no CDW phase. On the other hand, magnetic susceptibility and NMR data suggest the coexistence of localized moments with metallic carriers, in agreement with textit{ab initio} band structure calculations. This discrepancy is reconciled by a picture of electron localization induced by disorder or electronic correlations leading to a phase separation of metallic and non-metallic domains in the nm scale. We conclude that 1T-VS$_2$ is at the verge of a CDW transition and suggest that residual electronic doping in Li de-intercalated samples stabilizes a uniform CDW phase with metallic properties.
When electrons in a solid are excited with light, they can alter the free energy landscape and access phases of matter that are beyond reach in thermal equilibrium. This accessibility becomes of vast importance in the presence of phase competition, w hen one state of matter is preferred over another by only a small energy scale that, in principle, is surmountable by light. Here, we study a layered compound, LaTe$_3$, where a small in-plane (a-c plane) lattice anisotropy results in a unidirectional charge density wave (CDW) along the c-axis. Using ultrafast electron diffraction, we find that after photoexcitation, the CDW along the c-axis is weakened and subsequently, a different competing CDW along the a-axis emerges. The timescales characterizing the relaxation of this new CDW and the reestablishment of the original CDW are nearly identical, which points towards a strong competition between the two orders. The new density wave represents a transient non-equilibrium phase of matter with no equilibrium counterpart, and this study thus provides a framework for unleashing similar states of matter that are trapped under equilibrium conditions.
Topological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the sin gle-particle band structure is modified by strong interactions. We here demonstrate that the room-temperature phase of (TaSe$_4$)$_2$I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-1D structure, (TaSe$_4$)$_2$I hosts an established CDW instability just below room temperature. Using X-ray diffraction, angle-resolved photoemission spectroscopy, and first-principles calculations, we find that the CDW in (TaSe$_4$)$_2$I couples the bulk Weyl points and opens a band gap. The correlation-driven topological phase transition in (TaSe$_4$)$_2$I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.
We report a rectangular charge density wave (CDW) phase in strained 1T-VSe$_2$ thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{times}{sqrt{3a}} periodicit y, as opposed to the previously reported hexagonal $4atimes4a$ structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same $4atimessqrt{3}a$ CDW periodicity and an energy gap of $2Delta_{CDW}=(9.1pm0.1)$ meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both $4atimes4a$ and $4atimessqrt{3}a$ structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surfac e is exclusively fundamental for monolayer InSe. It leads to the extensive modification of the Fermi surface from six separated pockets to two pockets by increasing the hole densities. For low hole doping levels of the system, below the Lifshitz transition point, superconductive critical temperatures $T_c sim 55-75$ K are obtained within anisotropic Eliashberg theory depending on varying amounts of the Coulomb potential from 0.2 to 0.1. However, for some hole doping above the Lifshitz transition point, the combination of the temperature dependence of the bare susceptibility and the strong electron-phonon interaction gives rise to a charge density wave that emerged at a temperature far above the corresponding $T_c$. Having included non-adiabatic effects, we could carefully analyze conditions for which either a superconductive or charge density wave phase occurs in the system. In addition, monolayer InSe becomes dynamically stable by including non-adiabatic effects for different carrier concentrations at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا