ترغب بنشر مسار تعليمي؟ اضغط هنا

Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum

152   0   0.0 ( 0 )
 نشر من قبل Maxim Yattselev
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was discovered previously by the authors. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.



قيم البحث

اقرأ أيضاً

We look at periodic Jacobi matrices on trees. We provide upper and lower bounds on the gap of such operators analogous to the well known gap in the spectrum of the Laplacian on the upper half-plane with hyperbolic metric. We make some conjectures abo ut antibound states and make an interesting observation for what [3] calls the rg-model.
We study Jacobi matrices on trees whose coefficients are generated by multiple orthogonal polynomials. Hilbert space decomposition into an orthogonal sum of cyclic subspaces is obtained. For each subspace, we find generators and the generalized eigen functions written in terms of the orthogonal polynomials. The spectrum and its spectral type are studied for large classes of orthogonality measures.
We construct a functional model (direct integral expansion) and study the spectra of certain periodic block-operator Jacobi matrices, in particular, of general 2D partial difference operators of the second order. We obtain the upper bound, optimal in a sense, for the Lebesgue measure of their spectra. The examples of the operators for which there are several gaps in the spectrum are given.
We study spectrum inclusion regions for complex Jacobi matrices which are compact perturbations of the discrete laplacian. The condition sufficient for the lack of discrete spectrum for such matrices is given.
79 - Leonid Golinskii 2021
We study the trace class perturbations of the whole-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we refine the Lieb--Thirring inequality d ue to Hansmann--Katriel. The spectral enclosure for such operators is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا