ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality

161   0   0.0 ( 0 )
 نشر من قبل Maxim Yattselev
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Jacobi matrices on trees whose coefficients are generated by multiple orthogonal polynomials. Hilbert space decomposition into an orthogonal sum of cyclic subspaces is obtained. For each subspace, we find generators and the generalized eigenfunctions written in terms of the orthogonal polynomials. The spectrum and its spectral type are studied for large classes of orthogonality measures.



قيم البحث

اقرأ أيضاً

We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jac obi matrices on certain rooted trees. We express their Greens functions and the matrix elements in terms of MOPs. This provides a generalization of the well-known connection between the theory of polynomials orthogonal on the real line and Jacobi matrices on $mathbb{Z}_+$ to higher dimension. We illustrate importance of this connection by proving ratio asymptotics for MOPs using methods of operator theory.
We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was discovered previously by the authors. In this paper, we consider Angelesco systems formed by two analytic weights and ob tain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.
We look at periodic Jacobi matrices on trees. We provide upper and lower bounds on the gap of such operators analogous to the well known gap in the spectrum of the Laplacian on the upper half-plane with hyperbolic metric. We make some conjectures abo ut antibound states and make an interesting observation for what [3] calls the rg-model.
77 - Choon-Lin Ho , Ryu Sasaki 2019
The discrete orthogonality relations hold for all the orthogonal polynomials obeying three term recurrence relations. We show that they also hold for multi-indexed Laguerre and Jacobi polynomials, which are new orthogonal polynomials obtained by defo rming these classical orthogonal polynomials. The discrete orthogonality relations could be considered as more encompassing characterisation of orthogonal polynomials than the three term recurrence relations. As the multi-indexed orthogonal polynomials start at a positive degree $ell_{mathcal D}ge1$, the three term recurrence relations are broken. The extra $ell_{mathcal D}$ `lower degree polynomials, which are necessary for the discrete orthogonality relations, are identified. The corresponding Christoffel numbers are determined. The main results are obtained by the blow-up analysis of the second order differential operators governing the multi-indexed orthogonal polynomials around the zeros of these polynomials at a degree $mathcal{N}$. The discrete orthogonality relations are shown to hold for another group of `new orthogonal polynomials called Krein-Adler polynomials based on the Hermite, Laguerre and Jacobi polynomials.
180 - Francois Couchot 2016
A definition of quasi-flat left module is proposed and it is shown that any left module which is either quasi-projective or flat is quasi-flat. A characterization of local commutative rings for which each ideal is quasi-flat (resp. quasi-projective) is given. It is also proven that each commutative ring R whose finitely generated ideals are quasi-flat is of $lambda$-dimension $le$ 3, and this dimension $le$ 2 if R is local. This extends a former result about the class of arithmetical rings. Moreover, if R has a unique minimal prime ideal then its finitely generated ideals are quasi-projective if they are quasi-flat. In [1] Abuhlail, Jarrar and Kabbaj studied the class of commutative fqp-rings (finitely generated ideals are quasi-projective). They proved that this class of rings strictly contains the one of arithmetical rings and is strictly contained in the one of Gaussian rings. It is also shown that the property for a commutative ring to be fqp is preserved by localization. It is known that a commutative ring R is arithmetical (resp. Gaussian) if and only if R M is arithmetical (resp. Gaussian) for each maximal ideal M of R. But an example given in [6] shows that a commutative ring which is a locally fqp-ring is not necessarily a fqp-ring. So, in this cited paper the class of fqf-rings is introduced. Each local commutative fqf-ring is a fqp-ring, and a commutative ring is fqf if and only if it is locally fqf. These fqf-rings are defined in [6] without a definition of quasi-flat modules. Here we propose a definition of these modules and another definition of fqf-ring which is equivalent to the one given in [6]. We also introduce the module property of self-flatness. Each quasi-flat module is self-flat but we do not know if the converse holds. On the other hand, each flat module is quasi-flat and any finitely generated module is quasi-flat if and only if it is flat modulo its annihilator. In Section 2 we give a complete characterization of local commutative rings for which each ideal is self-flat. These rings R are fqp and their nilradical N is the subset of zerodivisors of R. In the case where R is not a chain ring for which N = N 2 and R N is not coherent every ideal is flat modulo its annihilator. Then in Section 3 we deduce that any ideal of a chain ring (valuation ring) R is quasi-projective if and only if it is almost maximal and each zerodivisor is nilpotent. This complete the results obtained by Hermann in [11] on valuation domains. In Section 4 we show that each commutative fqf-ring is of $lambda$-dimension $le$ 3. This extends the result about arithmetical rings obtained in [4]. Moreover it is shown that this $lambda$-dimension is $le$ 2 in the local case. But an example of a local Gaussian ring R of $lambda$-dimension $ge$ 3 is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا