ﻻ يوجد ملخص باللغة العربية
We construct a functional model (direct integral expansion) and study the spectra of certain periodic block-operator Jacobi matrices, in particular, of general 2D partial difference operators of the second order. We obtain the upper bound, optimal in a sense, for the Lebesgue measure of their spectra. The examples of the operators for which there are several gaps in the spectrum are given.
We look at periodic Jacobi matrices on trees. We provide upper and lower bounds on the gap of such operators analogous to the well known gap in the spectrum of the Laplacian on the upper half-plane with hyperbolic metric. We make some conjectures abo
A result of Borg--Hochstadt in the theory of periodic Jacobi matrices states that such a matrix has constant diagonals as long as all gaps in its spectrum are closed (have zero length). We suggest a quantitative version of this result by proving the
We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was discovered previously by the authors. In this paper, we consider Angelesco systems formed by two analytic weights and ob
We prove new spectral enclosures for the non-real spectrum of a class of $2times2$ block operator matrices with self-adjoint operators $A$ and $D$ on the diagonal and operators $B$ and $-B^*$ as off-diagonal entries. One of our main results resembles
Starting with an adjoint pair of operators, under suitable abstra