ﻻ يوجد ملخص باللغة العربية
Direct speech-to-image translation without text is an interesting and useful topic due to the potential applications in human-computer interaction, art creation, computer-aided design. etc. Not to mention that many languages have no writing form. However, as far as we know, it has not been well-studied how to translate the speech signals into images directly and how well they can be translated. In this paper, we attempt to translate the speech signals into the image signals without the transcription stage. Specifically, a speech encoder is designed to represent the input speech signals as an embedding feature, and it is trained with a pretrained image encoder using teacher-student learning to obtain better generalization ability on new classes. Subsequently, a stacked generative adversarial network is used to synthesize high-quality images conditioned on the embedding feature. Experimental results on both synthesized and real data show that our proposed method is effective to translate the raw speech signals into images without the middle text representation. Ablation study gives more insights about our method.
Simultaneous speech-to-text translation is widely useful in many scenarios. The conventional cascaded approach uses a pipeline of streaming ASR followed by simultaneous MT, but suffers from error propagation and extra latency. To alleviate these issu
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. Previous work addresses the problem by training an attention-based s
Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representat
NeurST is an open-source toolkit for neural speech translation. The toolkit mainly focuses on end-to-end speech translation, which is easy to use, modify, and extend to advanced speech translation research and products. NeurST aims at facilitating th
Cued Speech (CS) is a visual communication system for the deaf or hearing impaired people. It combines lip movements with hand cues to obtain a complete phonetic repertoire. Current deep learning based methods on automatic CS recognition suffer from