ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Modal Knowledge Distillation Method for Automatic Cued Speech Recognition

123   0   0.0 ( 0 )
 نشر من قبل Li Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cued Speech (CS) is a visual communication system for the deaf or hearing impaired people. It combines lip movements with hand cues to obtain a complete phonetic repertoire. Current deep learning based methods on automatic CS recognition suffer from a common problem, which is the data scarcity. Until now, there are only two public single speaker datasets for French (238 sentences) and British English (97 sentences). In this work, we propose a cross-modal knowledge distillation method with teacher-student structure, which transfers audio speech information to CS to overcome the limited data problem. Firstly, we pretrain a teacher model for CS recognition with a large amount of open source audio speech data, and simultaneously pretrain the feature extractors for lips and hands using CS data. Then, we distill the knowledge from teacher model to the student model with frame-level and sequence-level distillation strategies. Importantly, for frame-level, we exploit multi-task learning to weigh losses automatically, to obtain the balance coefficient. Besides, we establish a five-speaker British English CS dataset for the first time. The proposed method is evaluated on French and British English CS datasets, showing superior CS recognition performance to the state-of-the-art (SOTA) by a large margin.

قيم البحث

اقرأ أيضاً

As an important component of multimedia analysis tasks, audio classification aims to discriminate between different audio signal types and has received intensive attention due to its wide applications. Generally speaking, the raw signal can be transf ormed into various representations (such as Short Time Fourier Transform and Mel Frequency Cepstral Coefficients), and information implied in different representations can be complementary. Ensembling the models trained on different representations can greatly boost the classification performance, however, making inference using a large number of models is cumbersome and computationally expensive. In this paper, we propose a novel end-to-end collaborative learning framework for the audio classification task. The framework takes multiple representations as the input to train the models in parallel. The complementary information provided by different representations is shared by knowledge distillation. Consequently, the performance of each model can be significantly promoted without increasing the computational overhead in the inference stage. Extensive experimental results demonstrate that the proposed approach can improve the classification performance and achieve state-of-the-art results on both acoustic scene classification tasks and general audio tagging tasks.
This paper investigates a novel task of talking face video generation solely from speeches. The speech-to-video generation technique can spark interesting applications in entertainment, customer service, and human-computer-interaction industries. Ind eed, the timbre, accent and speed in speeches could contain rich information relevant to speakers appearance. The challenge mainly lies in disentangling the distinct visual attributes from audio signals. In this article, we propose a light-weight, cross-modal distillation method to extract disentangled emotional and identity information from unlabelled video inputs. The extracted features are then integrated by a generative adversarial network into talking face video clips. With carefully crafted discriminators, the proposed framework achieves realistic generation results. Experiments with observed individuals demonstrated that the proposed framework captures the emotional expressions solely from speeches, and produces spontaneous facial motion in the video output. Compared to the baseline method where speeches are combined with a static image of the speaker, the results of the proposed framework is almost indistinguishable. User studies also show that the proposed method outperforms the existing algorithms in terms of emotion expression in the generated videos.
99 - Linghui Meng , Jin Xu , Xu Tan 2021
In this paper, we propose MixSpeech, a simple yet effective data augmentation method based on mixup for automatic speech recognition (ASR). MixSpeech trains an ASR model by taking a weighted combination of two different speech features (e.g., mel-spe ctrograms or MFCC) as the input, and recognizing both text sequences, where the two recognition losses use the same combination weight. We apply MixSpeech on two popular end-to-end speech recognition models including LAS (Listen, Attend and Spell) and Transformer, and conduct experiments on several low-resource datasets including TIMIT, WSJ, and HKUST. Experimental results show that MixSpeech achieves better accuracy than the baseline models without data augmentation, and outperforms a strong data augmentation method SpecAugment on these recognition tasks. Specifically, MixSpeech outperforms SpecAugment with a relative PER improvement of 10.6$%$ on TIMIT dataset, and achieves a strong WER of 4.7$%$ on WSJ dataset.
The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale a udio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data.
101 - Wenxin Hou , Han Zhu , Yidong Wang 2021
Cross-lingual speech adaptation aims to solve the problem of leveraging multiple rich-resource languages to build models for a low-resource target language. Since the low-resource language has limited training data, speech recognition models can easi ly overfit. In this paper, we propose to use adapters to investigate the performance of multiple adapters for parameter-efficient cross-lingual speech adaptation. Based on our previous MetaAdapter that implicitly leverages adapters, we propose a novel algorithms called SimAdapter for explicitly learning knowledge from adapters. Our algorithm leverages adapters which can be easily integrated into the Transformer structure.MetaAdapter leverages meta-learning to transfer the general knowledge from training data to the test language. SimAdapter aims to learn the similarities between the source and target languages during fine-tuning using the adapters. We conduct extensive experiments on five-low-resource languages in Common Voice dataset. Results demonstrate that our MetaAdapter and SimAdapter methods can reduce WER by 2.98% and 2.55% with only 2.5% and 15.5% of trainable parameters compared to the strong full-model fine-tuning baseline. Moreover, we also show that these two novel algorithms can be integrated for better performance with up to 3.55% relative WER reduction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا