ﻻ يوجد ملخص باللغة العربية
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that not only the population of triplet charge transfer states grows in the presence of a magnetic field, but also how the power outcome of an organic photovoltaic cell is in that way increased.
We report on the influence of the quantum well thickness on the effective band gap and conversion efficiency of In0.12Ga0.88N/GaN multiple quantum well solar cells. The band-to-band transition can be redshifted from 395 to 474 nm by increasing the we
The thermoelectric properties of conductors with low electron density can be altered significantly by an applied magnetic field. For example, recent work has shown that Dirac/Weyl semimetals with a single pocket of carriers can exhibit a large enhanc
The formation of bound electron-hole pairs, also called charge-transfer (CT) states, in organic-based photovoltaic devices is one of the dominant loss mechanisms hindering performance. While CT state dynamics following electron transfer from donor to
The magneto-electronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge carrier pairs due to small differences in their Lande g-factors t
The honeycomb connection of carbon atoms by covalent bonds in a macroscopic two-dimensional scale leads to fascinating graphene and solar cell based on graphene/silicon Schottky diode has been widely studied. For solar cell applications, GaAs is supe