ﻻ يوجد ملخص باللغة العربية
This paper discusses a nonparametric regression model that naturally generalizes neural network models. The model is based on a finite number of one-dimensional transformations and can be estimated with a one-dimensional rate of convergence. The model contains the generalized additive model with unknown link function as a special case. For this case, it is shown that the additive components and link function can be estimated with the optimal rate by a smoothing spline that is the solution of a penalized least squares criterion.
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL)
In this paper, we built a new nonparametric regression estimator with the local linear method by using the mean squared relative error as a loss function when the data are subject to random right censoring. We establish the uniform almost sure consis
We introduce and study a local linear nonparametric regression estimator for censorship model. The main goal of this paper is, to establish the uniform almost sure consistency result with rate over a compact set for the new estimate. To support our t
In this paper, we study the properties of robust nonparametric estimation using deep neural networks for regression models with heavy tailed error distributions. We establish the non-asymptotic error bounds for a class of robust nonparametric regress
In this paper we propose a new test for the hypothesis of a constant coefficient of variation in the common nonparametric regression model. The test is based on an estimate of the $L^2$-distance between the square of the regression function and varia