ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband low loss and ultra-low crosstalk waveguide crossings based on multimode interferometer for 840 nm operation

114   0   0.0 ( 0 )
 نشر من قبل Stefan Nevlacsil
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broadband low loss and ultra-low crosstalk waveguide crossings are a crucial component for photonic integrated circuits to allow a higher integration density of functional components and an increased flexibility in the layout. We report the design of optimized silicon nitride waveguide crossings based on multimode interferometer structures for intersecting light paths of TE/TE-like, TM/TM-like and TE/TM-like polarized light in the near infrared wavelength region of 790 nm to 890 nm. The crossing design for diverse polarization modes facilitates dual polarization operation on a single chip. For all configurations the loss of a single crossing was measured to be 0.05 dB at 840 nm. Within the 100 nm bandwidth losses stayed below 0.16 dB. The crosstalk was estimated to be on the order of -60 dB by means of 3D finite difference time domain simulations.

قيم البحث

اقرأ أيضاً

Silicon nitride based photonic integrated circuits offer a wavelength operation window in the near infrared down to visible light, which makes them attractive for life science applications. However, they exhibit significantly different behavior in co mparison with better-established silicon on insulator counterparts due to the lower index contrast. Among the most important building blocks in photonic integrated circuits are broadband couplers with a defined coupling ratio. We present silicon nitride broadband asymmetric directional coupler designs with 50/50 and 90/10 splitting ratios with a central wavelength of 840 nm for both TE- and TM-like polarization. We show that silicon nitride broadband asymmetric directional couplers can be designed accurately in a time efficient way by using a general implementation of the coupled mode theory. The accuracy of the coupled mode theory approach is validated with finite difference time domain simulations and confirmed with measurements of four coupler configurations.
We experimentally demonstrate broadband waveguide crossing arrays showing ultra low loss down to $0.04,$dB/crossing ($0.9%$), matching theory, and crosstalk suppression over $35,$dB, in a CMOS-compatible geometry. The principle of operation is the ta ilored excitation of a low-loss spatial Bloch wave formed by matching the periodicity of the crossing array to the difference in propagation constants of the 1$^text{st}$- and 3$^text{rd}$-order TE-like modes of a multimode silicon waveguide. Radiative scattering at the crossing points acts like a periodic imaginary-permittivity perturbation that couples two supermodes, which results in imaginary (radiative) propagation-constant splitting and gives rise to a low-loss, unidirectional breathing Bloch wave. This type of crossing array provides a robust implementation of a key component enabling dense photonic integration.
Low propagation loss in high confinement waveguides is critical for chip-based nonlinear photonics applications. Sophisticated fabrication processes which yield sub-nm roughness are generally needed to reduce scattering points at the waveguide interf aces in order to achieve ultralow propagation loss. Here, we show ultralow propagation loss by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 $pm$ 4.4 million are experimentally demonstrated. Although the microresonators support 10 transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record-low threshold pump power of 73 $mu$W for parametric oscillation is measured and a broadband, almost octave spanning single-soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 nm to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that could be applied to different material platforms to achieve and use ultrahigh-Q multimode microresonators.
Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, the integration of PCMs with nanophotonic structures has introduced a new paradigm for non-volatile r econfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5 in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3 has recently emerged as a wide-bandgap PCM with transparency windows ranging from 610nm to near-IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3 are experimentally demonstrated for the first time in integrated photonic platforms at both 750nm and 1550nm. As opposed to silicon, the thermo-optic coefficient of Sb2S3 is shown to be negative, making the Sb2S3-Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3 integrated non-volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30dB. Our work experimentally verified the prominent phase modification and low loss of Sb2S3 in wavelength ranges relevant for both solid-state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post-fabrication trimming, and large-scale integrated quantum photonic network.
Photonic chips can miniaturize complicate optical systems very tiny and portable, providing versatile functionalities for many optical applications. Increasing the photonic chip integration density is highly desired as it provides more functionalitie s, low cost, and lower power consumption. However, photonic chip integration density is limited by the waveguide crosstalk, which is caused by the evanescent waves in the cladding. Here we show that the waveguide crosstalk can be suppressed completely with the exceptional coupling in extreme skin-depth (eskid) waveguides. The anisotropic dielectric perturbations in the coupled eskid waveguides cause such an exceptional coupling, resulting in infinitely long coupling length. We demonstrate the extreme suppression of waveguide crosstalk via exceptional coupling on a silicon-on-insulator (SOI) platform, which is compatible with a complementary metal-oxide-semiconductor (CMOS) process. The idea of exceptional coupling in eskid waveguides can be applied to many other photonic devices as well, significantly reducing entire chip footprints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا