ﻻ يوجد ملخص باللغة العربية
We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transverse trapping potential. Systematic numerical analysis reveals a variety of stable nonlinear modes, including stable fundamental solitons and breathers, as well as solitary vortices with winding number $n=1$, while vortices with $n=2$ are unstable, splitting into persistently rotating bound states of two unitary vortices. A characteristic feature of the system is bistability between the fundamental and vortex spatiotemporal solitons.
Dissipative solitons are remarkable localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist in nature,
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e
We report on the experimental observation of a new type of dark soliton in a fiber laser made of all normal group velocity dispersion fibers. It was shown that the soliton is formed due to the cross coupling between two different wavelength laser bea
We consider self-trapping of topological modes governed by the one- and two-dimensional (1D and 2D) nonlinear-Schrodinger/Gross-Pitaevskii equation with effective single- and double-well (DW) nonlinear potentials induced by spatial modulation of the