ترغب بنشر مسار تعليمي؟ اضغط هنا

Methods for the construction of interacting many-body Hamiltonians with compact localized states in geometrically frustrated clusters

46   0   0.0 ( 0 )
 نشر من قبل Filipe Santos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adding interactions to many-body Hamiltonians of geometrically frustrated lattices often leads to diminished subspaces of localized states. In this paper, we show how to construct interacting many-body Hamiltonians, starting from the non-interacting tight-binding Hamiltonians, that preserve or even expand these subspaces. The methods presented involve modifications in the one-body network representation of the many-body Hamiltonians which generate new interacting terms in these Hamiltonians. The subspace of many-particle localized states can be preserved in the interacting Hamiltonian, by projecting the interacting terms onto the subspace of many-body extended states or by constructing the interacting Hamiltonian applying origami rules to the network. Expanded subspaces of localized states are found if interacting terms that mix subspaces with different number of particles are introduced. Furthermore, we present numerical methods for the determination of many-body localized states that allows one to address larger clusters and larger number of particles than those accessible by full diagonalization of the interacting Hamiltonian. These methods rely on the generalization of the concept of compact localized state in the network. Finally, we suggest a method to determine localized states that use a considerable fraction of the network.

قيم البحث

اقرأ أيضاً

We characterize the conditions under which a translationally invariant matrix product state (MPS) is invariant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry group of a simple tensor. We expl oit this result in order to prove and extend a version of the Lieb-Schultz-Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results with an exhaustive search of SU(2)--invariant two-body Hamiltonians which have such MPS as exact ground states or excitations.
We investigate the dynamical properties of an interacting many-body system with a non-trivial energy potential landscape that may induce a singular continuous single-particle energy spectrum. Focusing on the Aubry-Andre model, whose anomalous transpo rt properties in presence of interaction has recently been demonstrated experimentally in an ultracold gas setup, we discuss the anomalous slowing down of the dynamics it exhibits and show that it emerges from the singular-continuous nature of the single-particle excitation spectrum. Our study demonstrates that singular-continuous spectra can be found in interacting systems, unlike previously conjectured by treating the interactions in the mean-field approximation. This, in turns, also highlights the importance of the many-body correlations in giving rise to anomalous dynamics, which, in many-body systems, can result from a non-trivial interplay between geometry and interactions.
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of their coherences in a given basis. Here, we numerically calculate different measures of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian as a function of the disorder. We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic to many-body-localized phase transition. We also perform quantum quench studies to distinguish the behavior of coherence in thermalized and localized phases. We then present a protocol to calculate measurement-based localizable coherence to investigate the thermal and many-body localized phases. The protocol allows one to investigate quantum correlations experimentally in a non-destructive way, in contrast to measures that require tracing out a subsystem, which always destroys coherence and correlation.
A large collaboration carefully benchmarks 20 first principles many-body electronic structure methods on a test set of 7 transition metal atoms, and their ions and monoxides. Good agreement is attained between the 3 systematically converged methods, resulting in experiment-free reference values. These reference values are used to assess the accuracy of modern emerging and scalable approaches to the many-electron problem. The most accurate methods obtain energies indistinguishable from experimental results, with the agreement mainly limited by the experimental uncertainties. Comparison between methods enables a unique perspective on calculations of many-body systems of electrons.
We introduce techniques for analysing the structure of quantum states of many-body localized (MBL) spin chains by identifying correlation clusters from pairwise correlations. These techniques proceed by interpreting pairwise correlations in the state as a weighted graph, which we analyse using an established graph theoretic clustering algorithm. We validate our approach by studying the eigenstates of a disordered XXZ spin chain across the MBL to ergodic transition, as well as the non-equilibrium dyanmics in the MBL phase following a global quantum quench. We successfully reproduce theoretical predictions about the MBL transition obtained from renormalization group schemes. Furthermore, we identify a clear signature of many-body dynamics analogous to the logarithmic growth of entanglement. The techniques that we introduce are computationally inexpensive and in combination with matrix product state methods allow for the study of large scale localized systems. Moreover, the correlation functions we use are directly accessible in a range of experimental settings including cold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا