ﻻ يوجد ملخص باللغة العربية
We present multi-wavelength measurements of the thermal, chemical, and cloud contrasts associated with the visibly dark formations (also known as 5-$mu$m hot spots) and intervening bright plumes on the boundary between Jupiters Equatorial Zone (EZ) and North Equatorial Belt (NEB). Observations made by the TEXES 5-20 $mu$m spectrometer at the Gemini North Telescope in March 2017 reveal the upper-tropospheric properties of 12 hot spots, which are directly compared to measurements by Juno using the Microwave Radiometer (MWR), JIRAM at 5 $mu$m, and JunoCam visible images. MWR and thermal-infrared spectroscopic results are consistent near 0.7 bar. Mid-infrared-derived aerosol opacity is consistent with that inferred from visible-albedo and 5-$mu$m opacity maps. Aerosol contrasts, the defining characteristics of the cloudy plumes and aerosol-depleted hot spots, are not a good proxy for microwave brightness. The hot spots are neither uniformly warmer nor ammonia-depleted compared to their surroundings at $p<1$ bar. At 0.7 bar, the microwave brightness at the edges of hot spots is comparable to other features within the NEB. Conversely, hot spots are brighter at 1.5 bar, signifying either warm temperatures and/or depleted NH$_3$ at depth. Temperatures and ammonia are spatially variable within the hot spots, so the precise location of the observations matters to their interpretation. Reflective plumes sometimes have enhanced NH$_3$, cold temperatures, and elevated aerosol opacity, but each plume appears different. Neither plumes nor hot spots had microwave signatures in channels sensing $p>10$ bars, suggesting that the hot-spot/plume wave is a relatively shallow feature.
Global maps of Jupiters atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 $mu$m mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASAs Infrared
Since the 1950s, quasi-periodic oscillations have been studied in the terrestrial equatorial stratosphere. Other planets of the solar system present (or are expected to present) such oscillations, like the Jupiter Equatorial Oscillation(JEO) and the
Oxygen is the most common element after hydrogen and helium in Jupiters atmosphere, and may have been the primary condensable (as water ice) in the protoplanetary disk. Prior to the Juno mission, in situ measurements of Jupiters water abundance were
Multi-band phase variations in principle allow us to infer the longitudinal temperature distributions of planets as a function of height in their atmospheres. For example, 3.6 micron emission originates from deeper layers of the atmosphere than 4.5 m
We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecrafts K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coude spectrograph on the McDona