ترغب بنشر مسار تعليمي؟ اضغط هنا

Wavelength Does Not Equal Pressure: Vertical Contribution Functions and their Implications for Mapping Hot Jupiters

83   0   0.0 ( 0 )
 نشر من قبل Nicolas Cowan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-band phase variations in principle allow us to infer the longitudinal temperature distributions of planets as a function of height in their atmospheres. For example, 3.6 micron emission originates from deeper layers of the atmosphere than 4.5 micron due to greater water vapor absorption at the longer wavelength. Since heat transport efficiency increases with pressure, we expect thermal phase curves at 3.6 micron to exhibit smaller amplitudes and greater phase offsets than at 4.5 micron; this trend is not observed. Of the seven hot Jupiters with full-orbit phase curves at 3.6 and 4.5 micron, all have greater phase amplitude at 3.6 micron than at 4.5 micron, while four of seven exhibit a greater phase offset at 3.6 micron. We use a 3D radiative-hydrodynamic model to calculate theoretical phase curves of HD 189733b, assuming thermo-chemical equilibrium. The model exhibits temperature, pressure, and wavelength dependent opacity, primarily driven by carbon chemistry: CO is energetically favored on the dayside, while CH4 is favored on the cooler nightside. Infrared opacity therefore changes by orders of magnitude between day and night, producing dramatic vertical shifts in the wavelength-specific photospheres, which would complicate eclipse or phase mapping with spectral data. The model predicts greater relative phase amplitude and greater phase offset at 3.6 micron than at 4.5 micron, in agreement with the data. Our model qualitatively explains the observed phase curves, but is in tension with current thermo-chemical kinetics models that predict zonally uniform atmospheric composition due to transport of CO from the hot regions of the atmosphere.



قيم البحث

اقرأ أيضاً

Extremely irradiated, close-in planets to early-type stars might be prone to strong atmospheric escape. We review the literature showing that X-ray-to-optical measurements indicate that for intermediate-mass stars (IMS) cooler than $approx$8250 K, th e X-ray and EUV (XUV) fluxes are on average significantly higher than those of solar-like stars, while for hotter IMS, because of the lack of surface convection, it is the opposite. We construct spectral energy distributions for prototypical IMS, comparing them to solar. The XUV fluxes relevant for upper planet atmospheric heating are highest for the cooler IMS and lowest for the hotter IMS, while the UV fluxes increase with increasing stellar temperature. We quantify the influence of this characteristic of the stellar fluxes on the mass loss of close-in planets by simulating the atmospheres of planets orbiting EUV-bright (WASP-33) and EUV-faint (KELT-9) A-type stars. For KELT-9b, we find that atmospheric expansion caused by heating due to absorption of the stellar UV and optical light drives mass-loss rates of $approx$10$^{11}$ g s$^{-1}$, while heating caused by absorption of the stellar XUV radiation leads to mass-loss rates of $approx$10$^{10}$ g s$^{-1}$, thus underestimating mass loss. For WASP-33b, the high XUV stellar fluxes lead to mass-loss rates of $approx$10$^{11}$ g s$^{-1}$. Even higher mass-loss rates are possible for less massive planets orbiting EUV-bright IMS. We argue that it is the weak XUV stellar emission, combined with a relatively high planetary mass, which limit planetary mass-loss rates, to allow the prolonged existence of KELT-9-like systems.
We present multi-wavelength measurements of the thermal, chemical, and cloud contrasts associated with the visibly dark formations (also known as 5-$mu$m hot spots) and intervening bright plumes on the boundary between Jupiters Equatorial Zone (EZ) a nd North Equatorial Belt (NEB). Observations made by the TEXES 5-20 $mu$m spectrometer at the Gemini North Telescope in March 2017 reveal the upper-tropospheric properties of 12 hot spots, which are directly compared to measurements by Juno using the Microwave Radiometer (MWR), JIRAM at 5 $mu$m, and JunoCam visible images. MWR and thermal-infrared spectroscopic results are consistent near 0.7 bar. Mid-infrared-derived aerosol opacity is consistent with that inferred from visible-albedo and 5-$mu$m opacity maps. Aerosol contrasts, the defining characteristics of the cloudy plumes and aerosol-depleted hot spots, are not a good proxy for microwave brightness. The hot spots are neither uniformly warmer nor ammonia-depleted compared to their surroundings at $p<1$ bar. At 0.7 bar, the microwave brightness at the edges of hot spots is comparable to other features within the NEB. Conversely, hot spots are brighter at 1.5 bar, signifying either warm temperatures and/or depleted NH$_3$ at depth. Temperatures and ammonia are spatially variable within the hot spots, so the precise location of the observations matters to their interpretation. Reflective plumes sometimes have enhanced NH$_3$, cold temperatures, and elevated aerosol opacity, but each plume appears different. Neither plumes nor hot spots had microwave signatures in channels sensing $p>10$ bars, suggesting that the hot-spot/plume wave is a relatively shallow feature.
The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of infl ation. In particular, although any valid model must allow for maintaining large planetary radii, only some allow for radii to increase with time. This reinflation process would potentially occur when the incident flux on the planet is increased. In this work, we examine the observed population of hot Jupiters to see if they grow as their parent stars brighten along the main sequence. We consider the relation between radius and other observables, including mass, incident flux, age, and fractional age (age over main sequence lifetime), and show that main sequence brightening is often sufficient to produce detectable reinflation. We further argue that these provide strong evidence for the relatively rapid reinflation of giant planets, and discuss the implications for proposed heating mechanisms. In our population analysis we also find evidence for a delayed-cooling effect, wherein planets cool and contract far more slowly than expected. While not capable of explaining the observed radii alone, it may represent an important component of the effect. Finally, we identify a weak negative relationship between stellar metallicity and planet radius which is presumably the result of enhanced planetary bulk metallicity around metal-rich stars and has important implications for planet formation theory.
106 - H. A. Knutson 2007
We present the results of recent observations of phase-dependent variations in brightness designed to characterize the atmospheres of hot Jupiters. In particular, we focus on recent observations of the transiting planet HD 189733b at 8 micron using t he Spitzer Space Telescope, which allow us to determine the efficiency of the day-night circulation on this planet and estimate the longitudinal positions of hot and cold regions in the atmosphere. We discuss the implications of these observations in the context of two other successful detections of more sparsely-sampled phase variations for the non-transiting systems upsilon And b and HD 179949b, which imply a potential diversity in the properties of the atmospheres of hot Jupiters. Lastly, we highlight several upcoming Spitzer observations that will extend this sample to additional wavelengths and more transiting systems in the near future.
Recent Spitzer infrared measurements of hot Jupiter eclipses suggest that eclipse mapping techniques could be used to spatially resolve the day-side photospheric emission of these planets using partial occultations. As a first step in this direction, we simulate ingress/egress lightcurves for the three brightest known eclipsing hot Jupiters and evaluate the degree to which parameterized photospheric emission models can be distinguished from each other with repeated, noisy eclipse measurements. We find that the photometric accuracy of Spitzer is insufficient to use this tool effectively. On the other hand, the level of photospheric details that could be probed with a few JWST eclipse measurements could greatly inform hot Jupiter atmospheric modeling efforts. A JWST program focused on non-parametric eclipse map
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا