ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Hot Jupiters from K2 Campaign 4

82   0   0.0 ( 0 )
 نشر من قبل Marshall Johnson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecrafts K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coude spectrograph on the McDonald Observatory 2.7 m telescope. K2-29 b (EPIC 211089792 b) transits a K1V star with a period of $3.2589263pm0.0000015$ days; its orbit is slightly eccentric ($e=0.084_{-0.023}^{+0.032}$). It has a radius of $R_P=1.000_{-0.067}^{+0.071}$ $R_J$ and a mass of $M_P=0.613_{-0.026}^{+0.027}$ $M_J$. Its host star exhibits significant rotational variability, and we measure a rotation period of $P_{mathrm{rot}}=10.777 pm 0.031$ days. K2-30 b (EPIC 210957318 b) transits a G6V star with a period of $4.098503pm0.000011$ days. It has a radius of $R_P=1.039_{-0.051}^{+0.050}$ $R_J$ and a mass of $M_P=0.579_{-0.027}^{+0.028}$ $M_J$. The star has a low metallicity for a hot Jupiter host, $[mathrm{Fe}/mathrm{H}]=-0.15 pm 0.05$.

قيم البحث

اقرأ أيضاً

We report the discovery of two hot Jupiters using photometry from Campaigns 4 and 5 of the two-wheeled Kepler (K2) mission. K2-30b has a mass of $ 0.65 pm 0.14 M_J$, a radius of $1.070 pm 0.018 R_J$ and transits its G dwarf ($T_{eff} = 5675 pm 50$ K) , slightly metal rich ([Fe/H]$=+0.06pm0.04$ dex) host star in a 4.1 days circular orbit. K2-34b has a mass of $ 1.63 pm 0.12 M_J$, a radius of $1.38 pm 0.014 R_J$ and has an orbital period of 3.0 days in which it orbits a late F dwarf ($T_{eff} = 6149 pm 55$ K) solar metallicity star. Both planets were validated probabilistically and confirmed via precision radial velocity (RV) measurements. They have physical and orbital properties similar to the ones of the already uncovered population of hot Jupiters and are well-suited candidates for further orbital and atmospheric characterization via detailed follow-up observations. Given that the discovery of both systems was recently reported by other groups we take the opportunity of refining the planetary parameters by including the RVs obtained by these independent studies in our global analysis.
We report the discovery from K2 of two transiting hot Jupiter systems. K2-295 (observed in Campaign 8) is a K5 dwarf which hosts a planet slightly smaller than Jupiter, orbiting with a period of 4.0 d. We have made an independent discovery of K2-237 b (Campaign 11), which orbits an F6 dwarf every 2.2 d and has an inflated radius 50 - 60 per cent larger than that of Jupiter. We use high-precision radial velocity measurements, obtained using the HARPS and FIES spectrographs, to measure the planetary masses. We find that K2-295 b has a similar mass to Saturn, while K2-237 b is a little more massive than Jupiter.
We report the discovery of two transiting extrasolar planets by the HATSouth survey. HATS-9b orbits an old (10.8 $pm$ 1.5 Gyr) V=13.3 G dwarf star, with a period P = 1.9153 d. The host star has a mass of 1.03 M$_{odot}$, radius of 1.503 R$_odot$ and effective temperature 5366 $pm$ 70 K. The planetary companion has a mass of 0.837 M$_J$, and radius of 1.065 R$_J$ yielding a mean density of 0.85 g cm$^{-3}$ . HATS-10b orbits a V=13.1 G dwarf star, with a period P = 3.3128 d. The host star has a mass of 1.1 M$_odot$, radius of 1.11 R$_odot$ and effective temperature 5880 $pm$ 120 K. The planetary companion has a mass of 0.53 M$_J$, and radius of 0.97 R$_J$ yielding a mean density of 0.7 g cm$^{-3}$ . Both planets are compact in comparison with planets receiving similar irradiation from their host stars, and lie in the nominal coordinates of Field 7 of K2 but only HATS-9b falls on working silicon. Future characterisation of HATS-9b with the exquisite photometric precision of the Kepler telescope may provide measurements of its reflected light signature.
We report the discovery of two transiting extrasolar planets from the HATSouth survey. HATS-11, a V=14.1 G0-star shows a periodic 12.9 mmag dip in its light curve every 3.6192 days and a radial velocity variation consistent with a Keplerian orbit. HA TS-11 has a mass of 1.000 $pm$ 0.060 M$_{odot}$, a radius of 1.444 $pm$ 0.057 M$_{odot}$ and an effective temperature of 6060 $pm$ 150 K, while its companion is a 0.85 $pm$ 0.12 M$_J$, 1.510 $pm$ 0.078 R$_J$ planet in a circular orbit. HATS-12 shows a periodic 5.1 mmag flux decrease every 3.1428 days and Keplerian RV variations around a V=12.8 F-star. HATS-12 has a mass of 1.489 $pm$ 0.071 M$_{odot}$, a radius of 2.21 $pm$ 0.21 R$_{odot}$, and an effective temperature of 6408 $pm$ 75 K. For HATS-12, our measurements indicate that this is a 2.38 $pm$ 0.11 M$_J$, 1.35 $pm$ 0.17 R$_J$ planet in a circular orbit. Both host stars show sub-solar metallicity of -0.390 $pm$ 0.060 dex and -0.100 $pm$ 0.040 dex, respectively and are (slightly) evolved stars. In fact, HATS-11 is amongst the most metal-poor and, HATS-12 is amongst the most evolved stars hosting a hot Jupiter planet. Importantly, HATS-11 and HATS-12 have been observed in long cadence by Kepler as part of K2 campaign 7 (EPIC216414930 and EPIC218131080 respectively).
We report the first results from a search for transiting warm Jupiter exoplanets - gas giant planets receiving stellar irradiation below about $10^8$ erg s$^{-1}$ cm$^{-2}$, equivalent to orbital periods beyond about 10 days around Sun-like stars. We have discovered two transiting warm Jupiter exoplanets initially identified as transiting candidates in ${it K2}$ photometry. K2-114b has a mass of $1.85^{+0.23}_{-0.22} M_J$, a radius of $0.942^{+0.032}_{-0.020} R_J$, and an orbital period of 11.4 days. K2-115b has a mass of $0.84^{+0.18}_{-0.20} M_J$, a radius of $1.115^{+0.057}_{-0.061} R_J$, and an orbital period of 20.3 days. Both planets are among the longest period transiting gas giant planets with a measured mass, and they are orbiting relatively old host stars. Both planets are not inflated as their radii are consistent with theoretical expectations. Their position in the planet radius - stellar irradiation diagram is consistent with the scenario where the radius - irradiation correlation levels off below about 10$^8$ erg s$^{-1}$ cm$^{-2}$, suggesting that for warm Jupiters the stellar irradiation does not play a significant role in determining the planet radius. We also report our identification of another ${it K2}$ transiting warm Jupiter candidate, EPIC 212504617, as a false positive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا