ﻻ يوجد ملخص باللغة العربية
The era of Big Data has brought with it a richer understanding of user behavior through massive data sets, which can help organizations optimize the quality of their services. In the context of transportation research, mobility data can provide Municipal Authorities (MA) with insights on how to operate, regulate, or improve the transportation network. Mobility data, however, may contain sensitive information about end users and trade secrets of Mobility Providers (MP). Due to this data privacy concern, MPs may be reluctant to contribute their datasets to MA. Using ideas from cryptography, we propose an interactive protocol between a MA and a MP in which MA obtains insights from mobility data without MP having to reveal its trade secrets or sensitive data of its users. This is accomplished in two steps: a commitment step, and a computation step. In the first step, Merkle commitments and aggregated traffic measurements are used to generate a cryptographic commitment. In the second step, MP extracts insights from the data and sends them to MA. Using the commitment and zero-knowledge proofs, MA can certify that the information received from MP is accurate, without needing to directly inspect the mobility data. We also present a differentially private version of the protocol that is suitable for the large query regime. The protocol is verifiable for both MA and MP in the sense that dishonesty from one party can be detected by the other. The protocol can be readily extended to the more general setting with multiple MPs via secure multi-party computation.
In this paper, we propose a trust-centric privacy-preserving blockchain for dynamic spectrum access in IoT networks. To be specific, we propose a trust evaluation mechanism to evaluate the trustworthiness of sensing nodes and design a Proof-of-Trust
Governments and researchers around the world are implementing digital contact tracing solutions to stem the spread of infectious disease, namely COVID-19. Many of these solutions threaten individual rights and privacy. Our goal is to break past the f
We introduce the use, monitoring, and enforcement of integrity constraints in trust management-style authorization systems. We consider what portions of the policy state must be monitored to detect violations of integrity constraints. Then we address
Fog computing is an emerging computing paradigm that has come into consideration for the deployment of IoT applications amongst researchers and technology industries over the last few years. Fog is highly distributed and consists of a wide number of
The salient features of blockchain, such as decentralisation and transparency, have allowed the development of Decentralised Trust and Reputation Management Systems (DTRMS), which mainly aim to quantitatively assess the trustworthiness of the network