ﻻ يوجد ملخص باللغة العربية
The evolution of galaxies at Cosmic Noon (redshift 1<z<3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mid-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The future IR space telescope mission, SPICA, currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5 m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.
To study the dust obscured phase of the galaxy evolution during the peak of the Star Formation Rate (SFR) and the Black Hole Accretion Rate (BHAR) density functions ($z = 1 - 4$), rest frame mid-to-far infrared (IR) spectroscopy is needed. At these f
We present a variation of the recently updated Munich semi-analytical galaxy formation model, L-Galaxies, with a new gas stripping method. Extending earlier work, we directly measure the local environmental properties of galaxies to formulate a more
We investigate the case of CII 158 micron observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging f
IR spectroscopy in the range 12-230 micron with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes that govern the formation and evolution of galaxies and black holes through cosmic time, bridging the gap
A far-infrared observatory such as the {it SPace Infrared telescope for Cosmology and Astrophysics} ({it SPICA}), with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last $sim10$ Gyr of t