ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulated CII observations for SPICA/SAFARI

107   0   0.0 ( 0 )
 نشر من قبل Francois Levrier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the case of CII 158 micron observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in length. The interplay of thermal instability, magnetic field and self-gravity leads to the formation of cold, dense clumps within a warm, turbulent interclump medium. We sample several clumps along a line of sight through the simulated cube and use them as input density profiles in the Meudon PDR code. This allows us to derive intensity predictions for the CII 158 micron line and provide time estimates for the mapping of a given sky area.



قيم البحث

اقرأ أيضاً

SPICA is a mid to far infra-red space mission to explore the processes that form galaxies, stars and planets. SPICA/SAFARI is the far infrared spectrometer that provides near-background limited observations between 34 and 230 micrometers. The core of SAFARI consists of 4 grating modules, dispersing light onto 5 arrays of TES detectors per module. The grating modules provide low resolution (250) instantaneous spectra over the entire wavelength range. The high resolution (1500 to 12000) mode is accomplished by placing a Fourier Transform Spectrometer (FTS) in front of the gratings. Each grating module detector sees an interferogram from which the high resolution spectrum can be constructed. SAFARI data will be a convolution of complex spectral, temporal and spatial information. Along with spectral calibration accuracy of <1%, a relative flux calibration of 1% and an absolute flux calibration accuracy of 10% are required. This paper will discuss the calibration strategy and its impact on the instrument design of SAFARI
Active asteroids behave dynamically like asteroids but display comet-like comae. These objects are poorly understood, with only about 30 identified to date. We have conducted one of the deepest systematic searches for asteroid activity by making use of deep images from the Dark Energy Camera (DECam) ideally suited to the task. We looked for activity indicators amongst 11,703 unique asteroids extracted from 35,640 images. We detected three previously-identified active asteroids ((62412), (1) Ceres and (779) Nina), though only (62412) showed signs of activity. Our activity occurrence rate of 1 in 11,703 is consistent with the prevailing 1 in 10,000 activity occurrence rate estimate. Our proof of concept demonstrates 1) our novel informatics approach can locate active asteroids and 2) DECam data are well-suited to the search for active asteroids.
The evolution of galaxies at Cosmic Noon (redshift 1<z<3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mi d-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The future IR space telescope mission, SPICA, currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5 m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.
We present a possible identification strategy for first hydrostatic core (FHSC) candidates and make predictions of ALMA dust continuum emission maps from these objects. We analyze the results given by the different bands and array configurations and identify which combinations of the two represent our best chance of solving the fragmentation issue in these objects. If the magnetic field is playing a role, the emission pattern will show evidence of a pseudo-disk and even of a magnetically driven outflow, which pure hydrodynamical calculations cannot reproduce.
191 - I. Kamp , M. Honda , H. Nomura 2021
In this era of spatially resolved observations of planet forming disks with ALMA and large ground-based telescopes such as the VLT, Keck and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPICA is an infrared space mission concept developed jointly by JAXA and ESA to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage 10-220 micron, (2) the high line detection sensitivity of (1-2) 10-19 W m-2 with R~2000-5000 in the far-IR (SAFARI) and 10-20 W m-2 with R~29000 in the mid-IR (SMI, spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. ... (abbreviated)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا