ﻻ يوجد ملخص باللغة العربية
A far-infrared observatory such as the {it SPace Infrared telescope for Cosmology and Astrophysics} ({it SPICA}), with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last $sim10$ Gyr of the Universe ($z=1.5-2$), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionized gas. We quantify the detectability of galaxy-scale massive molecular and ionized outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.
The evolution of galaxies at Cosmic Noon (redshift 1<z<3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mi
We analyse the 2-dimensional distribution and kinematics of the stars as well as molecular and ionised gas in the central few hundred parsecs of 5 active and 5 matched inactive galaxies. The equivalent widths of the Br-gamma line indicate there is no
We present a two-dimensional mapping of stellar population age components, emission-line fluxes, gas excitation and kinematics within the inner $sim200$ pc of the Seyfert 2 galaxy NGC 2110. We used the Gemini North Integral Field Spectrograph (NIFS)
We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7$^{primeprime} times 9^{primeprime}$ (530 $times$ 680 pc) at a spatial resolution of 0.9 (68 pc), and the spectral
We describe a physical model of the outflows produced as a result of gas accretion onto a black hole, and the resultant changes to star formation rates and efficiencies in galaxies, using the Radio-SAGE semi-analytic galaxy formation model. We show t