ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback and feeding in the context of galaxy evolution with SPICA: direct characterization of molecular outflows and inflows

67   0   0.0 ( 0 )
 نشر من قبل Eduardo Gonz\\'alez-Alfonso
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A far-infrared observatory such as the {it SPace Infrared telescope for Cosmology and Astrophysics} ({it SPICA}), with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last $sim10$ Gyr of the Universe ($z=1.5-2$), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionized gas. We quantify the detectability of galaxy-scale massive molecular and ionized outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.

قيم البحث

اقرأ أيضاً

The evolution of galaxies at Cosmic Noon (redshift 1<z<3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mi d-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The future IR space telescope mission, SPICA, currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5 m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.
We analyse the 2-dimensional distribution and kinematics of the stars as well as molecular and ionised gas in the central few hundred parsecs of 5 active and 5 matched inactive galaxies. The equivalent widths of the Br-gamma line indicate there is no on-going star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0S(1) H_2 kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H_2 kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three AGN, and hydrodynamical models indicate it can be driven by a large scale bar. In three of the five AGN, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk - which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk; and with moderate outflow rates, they will have only a local impact on the host galaxy. H_2 was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.
We present a two-dimensional mapping of stellar population age components, emission-line fluxes, gas excitation and kinematics within the inner $sim200$ pc of the Seyfert 2 galaxy NGC 2110. We used the Gemini North Integral Field Spectrograph (NIFS) in the J and K bands at a spatial resolution of $sim22$ pc. The unresolved nuclear continuum is originated in combined contributions of young stellar population (SP; age$leq100$ Myr), a featureless AGN continuum and hot dust emission. The young-intermediate SP ($100<$age$leq700$ Myr) is distributed in a ring-shaped structure at $approx140$ pc from the nucleus, which is roughly coincident with the lowest values of the stellar velocity dispersion. In the inner $approx115$ pc the old SP (age$>2$ Gyr) is dominant. The [FeII]1.25$mu$m emission-line flux distribution is correlated with the radio emission and its kinematics comprise two components, one from gas rotating in the galaxy plane and another from gas in outflow within a bicone oriented along north-south. These outflows seem to originate in the interaction of the radio jet with the ambient gas producing shocks that are the main excitation mechanism of the [FeII] emission. We estimate: (1) an ionized gas mass outflow rate of $sim0.5$ M$_odot$/yr at $sim$70 pc from the nucleus; and (2) a kinetic power for the outflow of only 0.05% of the AGN bolometric luminosity implying weak feedback effect on the galaxy.
We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7$^{primeprime} times 9^{primeprime}$ (530 $times$ 680 pc) at a spatial resolution of 0.9 (68 pc), and the spectral range 5700-7000 AA at a resolution of 66 km s$^{-1}$. The line emission is dominated by a bright central component, with two lobes extending $approx$ 3$^{primeprime}$ north and south of the nucleus. We identify three main kinematic components. The first has low velocity dispersion ($bar sigma approx $ 90 km s$^{-1}$), extends over the whole field-of-view, and has a velocity field consistent with gas rotating in the galaxy disk. We interpret the lobes as resulting from photoionization of disk gas in regions where the AGN radiation cones intercept the disk. The second has higher velocity dispersion ($bar sigma approx$ 200 km s$^{-1}$) and is observed in the inner 150 pc around the continuum peak. This component is double peaked, with redshifted and blueshifted components separated by $approx$ 500 km s$^{-1}$. Together with previous HST imaging, these features suggest the presence of a bipolar outflow for which we estimate a mass outflow rate of $mathrm{dot M} gtrsim $ 0.1 M$_{odot}$ yr$^{-1}$. The third component is revealed by velocity residuals associated with enhanced velocity dispersion and suggests that outflow and/or rotation is occurring approximately in the equatorial plane of the torus. A second system of velocity residuals may indicate the presence of streaming motions along dusty spirals in the disk.
We describe a physical model of the outflows produced as a result of gas accretion onto a black hole, and the resultant changes to star formation rates and efficiencies in galaxies, using the Radio-SAGE semi-analytic galaxy formation model. We show t hat the ratio of outflow rate to SFR of galaxies is mainly driven by black hole mass and virial halo mass, and show that the SFR is higher than the outflow rate at low black hole masses. The model consistently reproduces the observed evolution of star formation rate density from z = 6 to z = 0, as well as the trend of the stellar mass - halo mass relations. We show the characteristic growth of massive galaxies influenced by AGN feedback at different redshifts. We find feedback to be prevalent in the most massive galaxy halos, inhibiting the cooling catastrophe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا