ﻻ يوجد ملخص باللغة العربية
In this article, we present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of finite symmetries. We compute the tropical Grassmannian TGr$_0(3,8)$, and show that it refines the $15$-dimensional skeleton of the Dressian Dr$(3,8)$ with the exception of $23$ special cones for which we construct explicit obstructions to the realizability of their tropical linear spaces. Moreover, we propose algorithms for identifying maximal-dimensional tropical cones which belong to the positive tropicalization. These algorithms exploit symmetries of the tropical variety even though the positive tropicalization need not be symmetric. We compute the maximal-dimensional cones of the positive Grassmannian TGr$^+(3,8)$ and compare them to the cluster complex of the classical Grassmannian Gr$(3,8)$.
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations
The aim of this paper is to study homological properties of tropical fans and to propose a notion of smoothness in tropical geometry, which goes beyond matroids and their Bergman fans and which leads to an enrichment of the category of smooth tropica
We consider Gromovs homological higher convexity for complements of tropical varieties, establishing it for complements of tropical hypersurfaces and curves, and for nonarchimedean amoebas of varieties that are complete intersections over the field o
In this paper, we study the interplay between tropical and analytic geometry for closed subschemes of toric varieties. Let $K$ be a complete non-Archimedean field, and let $X$ be a closed subscheme of a toric variety over $K$. We define the tropical
We show that the number of combinatorial types of clusters of type $D_4$ modulo reflection-rotation is exactly equal to the number of combinatorial types of tropical planes in $mathbb{TP}^5$. This follows from a result of Sturmfels and Speyer which c