ترغب بنشر مسار تعليمي؟ اضغط هنا

Homology of tropical fans

168   0   0.0 ( 0 )
 نشر من قبل Matthieu Piquerez
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this paper is to study homological properties of tropical fans and to propose a notion of smoothness in tropical geometry, which goes beyond matroids and their Bergman fans and which leads to an enrichment of the category of smooth tropical varieties. Among the resulting applications, we prove the Hodge isomorphism theorem which asserts that the Chow rings of smooth unimodular tropical fans are isomorphic to the tropical cohomology rings of their corresponding canonical compactifications, and prove a slightly weaker statement for any unimodular fan. We furthermore introduce a notion of shellability for tropical fans and show that shellable tropical fans are smooth and thus enjoy all the nice homological properties of smooth tropical fans. Several other interesting properties for tropical fans are shown to be shellable. Finally, we obtain a generalization, both in the tropical and in the classical setting, of the pioneering work of Feichtner-Yuzvinsky and De Concini-Procesi on the cohomology ring of wonderful compactifications of complements of hyperplane arrangements. The results in this paper form the basis for our subsequent works on Hodge theory for tropical and non-Archimedean varieties.



قيم البحث

اقرأ أيضاً

In this article, we present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of finite symmetries. We compute the tropical Grassmannian TGr$_0(3,8)$, and show that it refines the $15$-dimensional skeleton of the Dressian Dr$(3,8)$ with the exception of $23$ special cones for which we construct explicit obstructions to the realizability of their tropical linear spaces. Moreover, we propose algorithms for identifying maximal-dimensional tropical cones which belong to the positive tropicalization. These algorithms exploit symmetries of the tropical variety even though the positive tropicalization need not be symmetric. We compute the maximal-dimensional cones of the positive Grassmannian TGr$^+(3,8)$ and compare them to the cluster complex of the classical Grassmannian Gr$(3,8)$.
We study a space of genus $g$ stable, $n$-marked tropical curves with total edge length $1$. Its rational homology is identified both with top-weight cohomology of the complex moduli space $M_{g,n}$ and with the homology of a marked version of Kontse vichs graph complex, up to a shift in degrees. We prove a contractibility criterion that applies to various large subspaces. From this we derive a description of the homotopy type of the tropical moduli space for $g = 1$, the top weight cohomology of $M_{1,n}$ as an $S_n$-representation, and additional calculations for small $(g,n)$. We also deduce a vanishing theorem for homology of marked graph complexes from vanishing of cohomology of $M_{g,n}$ in appropriate degrees, and comment on stability phenomena, or lack thereof.
We study the topology of a space parametrizing stable tropical curves of genus g with volume 1, showing that its reduced rational homology is canonically identified with both the top weight cohomology of M_g and also with the genus g part of the homo logy of Kontsevichs graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck-Teichmueller Lie algebra, we deduce that H^{4g-6}(M_g;Q) is nonzero for g=3, g=5, and g at least 7. This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.
We propose an algorithm to compute the GIT-fan for torus actions on affine varieties with symmetries. The algorithm combines computational techniques from commutative algebra, convex geometry and group theory. We have implemented our algorithm in the Singular library gitfan.lib. Using our implementation, we compute the Mori chamber decomposition of the cone of movable divisors of $bar{M}_{0,6}$.
We study the effect of edge contractions on simplicial homology because these contractions have turned to be useful in various applications involving topology. It was observed previously that contracting edges that satisfy the so called link conditio n preserves homeomorphism in low dimensional complexes, and homotopy in general. But, checking the link condition involves computation in all dimensions, and hence can be costly, especially in high dimensional complexes. We define a weaker and more local condition called the p-link condition for each dimension p, and study its effect on edge contractions. We prove the following: (i) For homology groups, edges satisfying the p- and (p-1)-link conditions can be contracted without disturbing the p-dimensional homology group. (ii) For relative homology groups, the (p-1)-, and the (p-2)-link conditions suffice to guarantee that the contraction does not introduce any new class in any of the resulting relative homology groups, though some of the existing classes can be destroyed. Unfortunately, the surjection in relative homolgy groups does not guarantee that no new relative torsion is created. (iii) For torsions, edges satisfying the p-link condition alone can be contracted without creating any new relative torsion and the p-link condition cannot be avoided. The results on relative homology and relative torsion are motivated by recent results on computing optimal homologous chains, which state that such problems can be solved by linear programming if the complex has no relative torsion. Edge contractions that do not introduce new relative torsions, can safely be availed in these contexts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا