ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher convexity for complements of tropical varieties

242   0   0.0 ( 0 )
 نشر من قبل Frank Sottile
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider Gromovs homological higher convexity for complements of tropical varieties, establishing it for complements of tropical hypersurfaces and curves, and for nonarchimedean amoebas of varieties that are complete intersections over the field of complex Puiseaux series. Based on these results, we conjecture that the complement of a tropical variety has this higher convexity, and we prove a weak form of our conjecture for the nonarchimedean amoeba of a variety over the complex Puiseaux field. One of our main tools is Jonssons limit theorem for tropical varieties.



قيم البحث

اقرأ أيضاً

In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
In this article, we present a massively parallel framework for computing tropicalizations of algebraic varieties which can make use of finite symmetries. We compute the tropical Grassmannian TGr$_0(3,8)$, and show that it refines the $15$-dimensional skeleton of the Dressian Dr$(3,8)$ with the exception of $23$ special cones for which we construct explicit obstructions to the realizability of their tropical linear spaces. Moreover, we propose algorithms for identifying maximal-dimensional tropical cones which belong to the positive tropicalization. These algorithms exploit symmetries of the tropical variety even though the positive tropicalization need not be symmetric. We compute the maximal-dimensional cones of the positive Grassmannian TGr$^+(3,8)$ and compare them to the cluster complex of the classical Grassmannian Gr$(3,8)$.
The goal of this article is to classify unramified covers of a fixed tropical base curve $Gamma$ with an action of a finite abelian group G that preserves and acts transitively on the fibers of the cover. We introduce the notion of dilated cohomology groups for a tropical curve $Gamma$, which generalize simplicial cohomology groups of $Gamma$ with coefficients in G by allowing nontrivial stabilizers at vertices and edges. We show that G-covers of $Gamma$ with a given collection of stabilizers are in natural bijection with the elements of the corresponding first dilated cohomology group of $Gamma$.
This is a sequel to our work in tropical Hodge theory. Our aim here is to prove a tropical analogue of the Clemens-Schmid exact sequence in asymptotic Hodge theory. As an application of this result, we prove the tropical Hodge conjecture for smooth p rojective tropical varieties which are rationally triangulable. This provides a partial answer to a question of Kontsevich who suggested the validity of the tropical Hodge conjecture could be used as a test for the validity of the Hodge conjecture.
We prove an analogue of Kirchhoffs matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a c areful study of the tropical Abel-Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition, and prove that its global degree is $2^{g-1}$. Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel-Prym map is $2^{g-1}$ as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا