ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Beilinson fiber square

149   0   0.0 ( 0 )
 نشر من قبل Benjamin Antieau
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using topological cyclic homology, we give a refinement of Beilinsons $p$-adic Goodwillie isomorphism between relative continuous $K$-theory and cyclic homology. As a result, we generalize results of Bloch-Esnault-Kerz and Beilinson on the $p$-adic deformations of $K$-theory classes. Furthermore, we prove structural results for the Bhatt-Morrow-Scholze filtration on $TC$ and identify the graded pieces with the syntomic cohomology of Fontaine-Messing.



قيم البحث

اقرأ أيضاً

We develop the Hochschild analogue of the coniveau spectral sequence and the Gersten complex. Since Hochschild homology does not have devissage or A^1-invariance, this is a little different from the K-theory story. In fact, the rows of our spectral s equence look a lot like the Cousin complexes in Hartshornes 1966 Residues & Duality. Note that these are for coherent cohomology. We prove that they agree by an HKR isomorphism with supports. Using the close ties of Hochschild homology to Lie algebra homology, this gives residue maps in Lie homology, which we show to agree with those `a la Tate-Beilinson.
We formulate a conjectural p-adic analogue of Borels theorem relating regulators for higher K-groups of number fields to special values of the corresponding zeta-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresp onding conjecture for Artin motives, and state a conjecture about the precise relation between the p-adic and classical situations. Parts of he conjectures are proved when the number field (or Artin motive) is Abelian over the rationals, and all conjectures are verified numerically in some other cases.
In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the cen tral critical value of the Rankin-Selberg $L$-function does not vanish, then the Bloch-Kato Selmer group with coefficients in a favorable field of the corresponding motive vanishes. We also show that if the class in the Bloch-Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjecturally equivalent to the nonvanishing of the central critical first derivative of the Rankin-Selberg $L$-function, then the Bloch-Kato Selmer group is of rank one.
We prove that exterior powers of (skew-)symmetric bundles induce a $lambda$-ring structure on the ring $GW^0(X) oplus GW^2(X)$, when $X$ is a scheme where $2$ is invertible. Using this structure, we define stable Adams operations on Hermitian $K$-the ory. As a byproduct of our methods, we also compute the ternary laws associated to Hermitian $K$-theory.
We define the Chow $t$-structure on the $infty$-category of motivic spectra $SH(k)$ over an arbitrary base field $k$. We identify the heart of this $t$-structure $SH(k)^{cheartsuit}$ when the exponential characteristic of $k$ is inverted. Restricting to the cellular subcategory, we identify the Chow heart $SH(k)^{cell, cheartsuit}$ as the category of even graded $MU_{2*}MU$-comodules. Furthermore, we show that the $infty$-category of modules over the Chow truncated sphere spectrum is algebraic. Our results generalize the ones in Gheorghe--Wang--Xu in three aspects: To integral results; To all base fields other than just $C$; To the entire $infty$-category of motivic spectra $SH(k)$, rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field $k$ using the Postnikov tower associated to the Chow $t$-structure and the motivic Adams spectral sequences over $k$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا