ﻻ يوجد ملخص باللغة العربية
We develop the Hochschild analogue of the coniveau spectral sequence and the Gersten complex. Since Hochschild homology does not have devissage or A^1-invariance, this is a little different from the K-theory story. In fact, the rows of our spectral sequence look a lot like the Cousin complexes in Hartshornes 1966 Residues & Duality. Note that these are for coherent cohomology. We prove that they agree by an HKR isomorphism with supports. Using the close ties of Hochschild homology to Lie algebra homology, this gives residue maps in Lie homology, which we show to agree with those `a la Tate-Beilinson.
Using topological cyclic homology, we give a refinement of Beilinsons $p$-adic Goodwillie isomorphism between relative continuous $K$-theory and cyclic homology. As a result, we generalize results of Bloch-Esnault-Kerz and Beilinson on the $p$-adic d
We formulate a conjectural p-adic analogue of Borels theorem relating regulators for higher K-groups of number fields to special values of the corresponding zeta-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresp
In this paper we investigate the functoriality properties of map-graded Hochschild complexes. We show that the category MAP of map-graded categories is naturally a stack over the category of small categories endowed with a certain Grothendieck topolo
This paper is dedicated to triangulated categories endowed with weight structures (a new notion; D. Pauksztello has independently introduced them as co-t-structures). This axiomatizes the properties of stupid truncations of complexes in $K(B)$. We al
We give a popular introduction to formality theorems for Hochschild complexes and their applications. We review some of the recent results and prove that the truncated Hochschild cochain complex of a polynomial algebra is non-formal.