ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanism Design for Wireless Powered Spatial Crowdsourcing Networks

59   0   0.0 ( 0 )
 نشر من قبل Yutao Jiao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless power transfer (WPT) is a promising technology to prolong the lifetime of the sensors and communication devices, i.e., workers, in completing crowdsourcing tasks by providing continuous and cost-effective energy supplies. In this paper, we propose a wireless powered spatial crowdsourcing framework which consists of two mutually dependent phases: task allocation phase and data crowdsourcing phase. In the task allocation phase, we propose a Stackelberg game based mechanism for the spatial crowdsourcing platform to efficiently allocate spatial tasks and wireless charging power to each worker. In the data crowdsourcing phase, the workers may have an incentive to misreport its real working location to improve its utility, which causes adverse effects to the spatial crowdsourcing platform. To address this issue, we present three strategyproof deployment mechanisms for the spatial crowdsourcing platform to place a mobile base station, e.g., vehicle or robot, which is responsible for transferring the wireless power and collecting the crowdsourced data. As the benchmark, we first apply the classical median mechanism and evaluate its worst-case performance. Then, we design a conventional strategyproof deployment mechanism to improve the expected utility of the spatial crowdsourcing platform under the condition that the workers locations follow a known geographical distribution. For a more general case with only the historical location data available, we propose a deep learning based strategyproof deployment mechanism to maximize the spatial crowdsourcing platforms utility. Extensive experimental results based on synthetic and real-world datasets reveal the effectiveness of the proposed framework in allocating tasks and charging power to workers while avoiding the dishonest workers manipulation.



قيم البحث

اقرأ أيضاً

121 - Dengji Zhao 2021
Mechanism design has traditionally assumed that the set of participants are fixed and known to the mechanism (the market owner) in advance. However, in practice, the market owner can only directly reach a small number of participants (her neighbours) . Hence the owner often needs costly promotions to recruit more participants in order to get desirable outcomes such as social welfare or revenue maximization. In this paper, we propose to incentivize existing participants to invite their neighbours to attract more participants. However, they would not invite each other if they are competitors. We discuss how to utilize the conflict of interest between the participants to incentivize them to invite each other to form larger markets. We will highlight the early solutions and open the floor for discussing the fundamental open questions in the settings of auctions, coalitional games, matching and voting.
243 - Jiajun Sun 2013
In crowdsourcing markets, there are two different type jobs, i.e. homogeneous jobs and heterogeneous jobs, which need to be allocated to workers. Incentive mechanisms are essential to attract extensive user participating for achieving good service qu ality, especially under a given budget constraint condition. To this end, recently, Singer et al. propose a novel class of auction mechanisms for determining near-optimal prices of tasks for crowdsourcing markets constrained by the given budget. Their mechanisms are very useful to motivate extensive user to truthfully participate in crowdsourcing markets. Although they are so important, there still exist many security and privacy challenges in real-life environments. In this paper, we present a general privacy-preserving verifiable incentive mechanism for crowdsourcing markets with the budget constraint, not only to exploit how to protect the bids and assignments privacy, and the chosen winners privacy in crowdsourcing markets with homogeneous jobs and heterogeneous jobs and identity privacy from users, but also to make the verifiable payment between the platform and users for crowdsourcing applications. Results show that our general privacy-preserving verifiable incentive mechanisms achieve the same results as the generic one without privacy preservation.
196 - Jiajun Sun 2013
Recently, a novel class of incentive mechanisms is proposed to attract extensive users to truthfully participate in crowd sensing applications with a given budget constraint. The class mechanisms also bring good service quality for the requesters in crowd sensing applications. Although it is so important, there still exists many verification and privacy challenges, including users bids and subtask information privacy and identification privacy, winners set privacy of the platform, and the security of the payment outcomes. In this paper, we present a privacy-preserving verifiable incentive mechanism for crowd sensing applications with the budget constraint, not only to explore how to protect the privacies of users and the platform, but also to make the verifiable payment correct between the platform and users for crowd sensing applications. Results indicate that our privacy-preserving verifiable incentive mechanism achieves the same results as the generic one without privacy preservation.
We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperati on, the secondary network gains the spectrum access where SUs transmit to HAP using time division multiple access. To maximize the sum-throughput of SUs, we present a secondary sum-throughput optimal resource allocation (STORA) scheme. Under the constraint of meeting target primary rate, the STORA scheme chooses the optimal set of relaying SUs and jointly performs the time and energy allocation for SUs. Specifically, by exploiting the structure of the optimal solution, we find the order in which SUs are prioritized to relay primary data. Since the STORA scheme focuses on the sum-throughput, it becomes inconsiderate towards individual SU throughput, resulting in low fairness. To enhance fairness, we investigate three resource allocation schemes, which are (i) equal time allocation, (ii) minimum throughput maximization, and (iii) proportional time allocation. Simulation results reveal the trade-off between sum-throughput and fairness. The minimum throughput maximization scheme is the fairest one as each SU gets the same throughput, but yields the least SU sum-throughput.
We develop and extend a line of recent works on the design of mechanisms for heterogeneous tasks assignment problem in crowdsourcing. The budgeted market we consider consists of multiple task requesters and multiple IoT devices as task executers; whe re each task requester is endowed with a single distinct task along with the publicly known budget. Also, each IoT device has valuations as the cost for executing the tasks and quality, which are private. Given such scenario, the objective is to select a subset of IoT devices for each task, such that the total payment made is within the allotted quota of the budget while attaining a threshold quality. For the purpose of determining the unknown quality of the IoT devices, we have utilized the concept of peer grading. In this paper, we have carefully crafted a truthful budget feasible mechanism; namely TUBE-TAP for the problem under investigation that also allows us to have the true information about the quality of the IoT devices. The simulations are performed in order to measure the efficacy of our proposed mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا