ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy-Preserving Verifiable Incentive Mechanism for Crowdsourcing Market Applications

182   0   0.0 ( 0 )
 نشر من قبل David Sun
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jiajun Sun




اسأل ChatGPT حول البحث

Recently, a novel class of incentive mechanisms is proposed to attract extensive users to truthfully participate in crowd sensing applications with a given budget constraint. The class mechanisms also bring good service quality for the requesters in crowd sensing applications. Although it is so important, there still exists many verification and privacy challenges, including users bids and subtask information privacy and identification privacy, winners set privacy of the platform, and the security of the payment outcomes. In this paper, we present a privacy-preserving verifiable incentive mechanism for crowd sensing applications with the budget constraint, not only to explore how to protect the privacies of users and the platform, but also to make the verifiable payment correct between the platform and users for crowd sensing applications. Results indicate that our privacy-preserving verifiable incentive mechanism achieves the same results as the generic one without privacy preservation.



قيم البحث

اقرأ أيضاً

215 - Jiajun Sun 2013
In crowdsourcing markets, there are two different type jobs, i.e. homogeneous jobs and heterogeneous jobs, which need to be allocated to workers. Incentive mechanisms are essential to attract extensive user participating for achieving good service qu ality, especially under a given budget constraint condition. To this end, recently, Singer et al. propose a novel class of auction mechanisms for determining near-optimal prices of tasks for crowdsourcing markets constrained by the given budget. Their mechanisms are very useful to motivate extensive user to truthfully participate in crowdsourcing markets. Although they are so important, there still exist many security and privacy challenges in real-life environments. In this paper, we present a general privacy-preserving verifiable incentive mechanism for crowdsourcing markets with the budget constraint, not only to exploit how to protect the bids and assignments privacy, and the chosen winners privacy in crowdsourcing markets with homogeneous jobs and heterogeneous jobs and identity privacy from users, but also to make the verifiable payment between the platform and users for crowdsourcing applications. Results show that our general privacy-preserving verifiable incentive mechanisms achieve the same results as the generic one without privacy preservation.
360 - Shuyuan Zheng , Yang Cao , 2021
Federated learning (FL) is an emerging paradigm for machine learning, in which data owners can collaboratively train a model by sharing gradients instead of their raw data. Two fundamental research problems in FL are incentive mechanism and privacy p rotection. The former focuses on how to incentivize data owners to participate in FL. The latter studies how to protect data owners privacy while maintaining high utility of trained models. However, incentive mechanism and privacy protection in FL have been studied separately and no work solves both problems at the same time. In this work, we address the two problems simultaneously by an FL-Market that incentivizes data owners participation by providing appropriate payments and privacy protection. FL-Market enables data owners to obtain compensation according to their privacy loss quantified by local differential privacy (LDP). Our insight is that, by meeting data owners personalized privacy preferences and providing appropriate payments, we can (1) incentivize privacy risk-tolerant data owners to set larger privacy parameters (i.e., gradients with less noise) and (2) provide preferred privacy protection for privacy risk-averse data owners. To achieve this, we design a personalized LDP-based FL framework with a deep learning-empowered auction mechanism for incentivizing trading gradients with less noise and optimal aggregation mechanisms for model updates. Our experiments verify the effectiveness of the proposed framework and mechanisms.
Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, i n order to effectively and efficiently recruit sufficient MUs, i.e., participants, we investigate an optimal reward mechanism of the monopoly Crowdsensing Service Provider (CSP). We model the rewarding and participating as a two-stage game, and analyze the MUs participation level and the CSPs optimal reward mechanism using backward induction. At the same time, the reward is designed taking the underlying social network effects amid the mobile social network into account, for motivating the participants. Namely, one MU will obtain additional benefits from information contributed or shared by local neighbours in social networks. We derive the analytical expressions for the discriminatory reward as well as uniform reward with complete information, and approximations of reward incentive with incomplete information. Performance evaluation reveals that the network effects tremendously stimulate higher mobile participation level and greater revenue of the CSP. In addition, the discriminatory reward enables the CSP to extract greater surplus from this Crowdsensing service market.
122 - Guocheng Liao , Xu Chen , 2019
We study a problem of privacy-preserving mechanism design. A data collector wants to obtain data from individuals to perform some computations. To relieve the privacy threat to the contributors, the data collector adopts a privacy-preserving mechanis m by adding random noise to the computation result, at the cost of reduced accuracy. Individuals decide whether to contribute data when faced with the privacy issue. Due to the intrinsic uncertainty in privacy protection, we model individuals privacy-related decision using Prospect Theory. Such a theory more accurately models individuals behavior under uncertainty than the traditional expected utility theory, whose prediction always deviates from practical human behavior. We show that the data collectors utility maximization problem involves a polynomial of high and fractional order, the root of which is difficult to compute analytically. We get around this issue by considering a large population approximation, and obtain a closed-form solution that well approximates the precise solution. We discover that the data collector who considers the more realistic Prospect Theory based individual decision modeling would adopt a more conservative privacy-preserving mechanism, compared with the case based on the expected utility theory modeling. We also study the impact of Prospect Theory parameters, and concludes that more loss-averse or risk-seeking individuals will trigger a more conservative mechanism. When individuals have different Prospect Theory parameters, simulations demonstrate that the privacy protection first becomes stronger and then becomes weaker as the heterogeneity increases from a low value to a high one.
Incentive mechanism plays a critical role in privacy-aware crowdsensing. Most previous studies on co-design of incentive mechanism and privacy preservation assume a trustworthy fusion center (FC). Very recent work has taken steps to relax the assumpt ion on trustworthy FC and allows participatory users (PUs) to add well calibrated noise to their raw sensing data before reporting them, whereas the focus is on the equilibrium behavior of data subjects with binary data. Making a paradigm shift, this paper aim to quantify the privacy compensation for continuous data sensing while allowing FC to directly control PUs. There are two conflicting objectives in such scenario: FC desires better quality data in order to achieve higher aggregation accuracy whereas PUs prefer adding larger noise for higher privacy-preserving levels (PPLs). To achieve a good balance therein, we design an efficient incentive mechanism to REconcile FCs Aggregation accuracy and individual PUs data Privacy (REAP). Specifically, we adopt the celebrated notion of differential privacy to measure PUs PPLs and quantify their impacts on FCs aggregation accuracy. Then, appealing to Contract Theory, we design an incentive mechanism to maximize FCs aggregation accuracy under a given budget. The proposed incentive mechanism offers different contracts to PUs with different privacy preferences, by which FC can directly control PUs. It can further overcome the information asymmetry, i.e., the FC typically does not know each PUs precise privacy preference. We derive closed-form solutions for the optimal contracts in both complete information and incomplete information scenarios. Further, the results are generalized to the continuous case where PUs privacy preferences take values in a continuous domain. Extensive simulations are provided to validate the feasibility and advantages of our proposed incentive mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا