ﻻ يوجد ملخص باللغة العربية
Recently, a novel class of incentive mechanisms is proposed to attract extensive users to truthfully participate in crowd sensing applications with a given budget constraint. The class mechanisms also bring good service quality for the requesters in crowd sensing applications. Although it is so important, there still exists many verification and privacy challenges, including users bids and subtask information privacy and identification privacy, winners set privacy of the platform, and the security of the payment outcomes. In this paper, we present a privacy-preserving verifiable incentive mechanism for crowd sensing applications with the budget constraint, not only to explore how to protect the privacies of users and the platform, but also to make the verifiable payment correct between the platform and users for crowd sensing applications. Results indicate that our privacy-preserving verifiable incentive mechanism achieves the same results as the generic one without privacy preservation.
In crowdsourcing markets, there are two different type jobs, i.e. homogeneous jobs and heterogeneous jobs, which need to be allocated to workers. Incentive mechanisms are essential to attract extensive user participating for achieving good service qu
Federated learning (FL) is an emerging paradigm for machine learning, in which data owners can collaboratively train a model by sharing gradients instead of their raw data. Two fundamental research problems in FL are incentive mechanism and privacy p
Mobile Crowdsensing has shown a great potential to address large-scale problems by allocating sensing tasks to pervasive Mobile Users (MUs). The MUs will participate in a Crowdsensing platform if they can receive satisfactory reward. In this paper, i
We study a problem of privacy-preserving mechanism design. A data collector wants to obtain data from individuals to perform some computations. To relieve the privacy threat to the contributors, the data collector adopts a privacy-preserving mechanis
Incentive mechanism plays a critical role in privacy-aware crowdsensing. Most previous studies on co-design of incentive mechanism and privacy preservation assume a trustworthy fusion center (FC). Very recent work has taken steps to relax the assumpt