ترغب بنشر مسار تعليمي؟ اضغط هنا

MetNet: A Neural Weather Model for Precipitation Forecasting

203   0   0.0 ( 0 )
 نشر من قبل Casper Kaae S{\\o}nderby
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Weather forecasting is a long standing scientific challenge with direct social and economic impact. The task is suitable for deep neural networks due to vast amounts of continuously collected data and a rich spatial and temporal structure that presents long range dependencies. We introduce MetNet, a neural network that forecasts precipitation up to 8 hours into the future at the high spatial resolution of 1 km$^2$ and at the temporal resolution of 2 minutes with a latency in the order of seconds. MetNet takes as input radar and satellite data and forecast lead time and produces a probabilistic precipitation map. The architecture uses axial self-attention to aggregate the global context from a large input patch corresponding to a million square kilometers. We evaluate the performance of MetNet at various precipitation thresholds and find that MetNet outperforms Numerical Weather Prediction at forecasts of up to 7 to 8 hours on the scale of the continental United States.

قيم البحث

اقرأ أيضاً

In this work we propose a novel approach to utilize convolutional neural networks for time series forecasting. The time direction of the sequential data with spatial dimensions $D=1,2$ is considered democratically as the input of a spatiotemporal $(D +1)$-dimensional convolutional neural network. Latter then reduces the data stream from $D +1 to D$ dimensions followed by an incriminator cell which uses this information to forecast the subsequent time step. We empirically compare this strategy to convolutional LSTMs and LSTMs on their performance on the sequential MNIST and the JSB chorals dataset, respectively. We conclude that temporally folded convolutional neural networks (TFCs) may outperform the conventional recurrent strategies.
Extreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access to accurate multi-day forecasts, to mitigate against such events. However, there is currently no benchmark dataset dedicated to the study of global precipitation forecasts. In this paper, we introduce textbf{RainBench}, a new multi-modal benchmark dataset for data-driven precipitation forecasting. It includes simulated satellite data, a selection of relevant meteorological data from the ERA5 reanalysis product, and IMERG precipitation data. We also release textbf{PyRain}, a library to process large precipitation datasets efficiently. We present an extensive analysis of our novel dataset and establish baseline results for two benchmark medium-range precipitation forecasting tasks. Finally, we discuss existing data-driven weather forecasting methodologies and suggest future research avenues.
Gridded data products, for example interpolated daily measurements of precipitation from weather stations, are commonly used as a convenient substitute for direct observations because these products provide a spatially and temporally continuous and c omplete source of data. However, when the goal is to characterize climatological features of extreme precipitation over a spatial domain (e.g., a map of return values) at the native spatial scales of these phenomena, then gridded products may lead to incorrect conclusions because daily precipitation is a fractal field and hence any smoothing technique will dampen local extremes. To address this issue, we create a new probabilistic gridded product specifically designed to characterize the climatological properties of extreme precipitation by applying spatial statistical analyses to daily measurements of precipitation from the GHCN over CONUS. The essence of our method is to first estimate the climatology of extreme precipitation based on station data and then use a data-driven statistical approach to interpolate these estimates to a fine grid. We argue that our method yields an improved characterization of the climatology within a grid cell because the probabilistic behavior of extreme precipitation is much better behaved (i.e., smoother) than daily weather. Furthermore, the spatial smoothing innate to our approach significantly increases the signal-to-noise ratio in the estimated extreme statistics relative to an analysis without smoothing. Finally, by deriving a data-driven approach for translating extreme statistics to a spatially complete grid, the methodology outlined in this paper resolves the issue of how to properly compare station data with output from earth system models. We conclude the paper by comparing our probabilistic gridded product with a standard extreme value analysis of the Livneh gridded daily precipitation product.
Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First s tudies show promise but the lack of a common dataset and evaluation metrics make inter-comparison between studies difficult. Here we present a benchmark dataset for data-driven medium-range weather forecasting, a topic of high scientific interest for atmospheric and computer scientists alike. We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models. We propose simple and clear evaluation metrics which will enable a direct comparison between different methods. Further, we provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models. The dataset is publicly available at https://github.com/pangeo-data/WeatherBench and the companion code is reproducible with tutorials for getting started. We hope that this dataset will accelerate research in data-driven weather forecasting.
Space weather indices are commonly used to drive operational forecasts of various geospace systems, including the thermosphere for mass density and satellite drag. The drivers serve as proxies for various processes that cause energy flow and depositi on in the geospace system. Forecasts of neutral mass density is a major uncertainty in operational orbit prediction and collision avoidance for objects in low earth orbit (LEO). For the strongly driven system, accuracy of space weather driver forecasts is crucial for operations. The High Accuracy Satellite Drag Model (HASDM) currently employed by the United States Air Force in an operational environment is driven by four (4) solar and two (2) geomagnetic proxies. Space Environment Technologies (SET) is contracted by the space command to provide forecasts for the drivers. This work performs a comprehensive assessment for the performance of the driver forecast models. The goal is to provide a benchmark for future improvements of the forecast models. Using an archived data set spanning six (6) years and 15,000 forecasts across solar cycle 24, we quantify the temporal statistics of the model performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا