ﻻ يوجد ملخص باللغة العربية
Gridded data products, for example interpolated daily measurements of precipitation from weather stations, are commonly used as a convenient substitute for direct observations because these products provide a spatially and temporally continuous and complete source of data. However, when the goal is to characterize climatological features of extreme precipitation over a spatial domain (e.g., a map of return values) at the native spatial scales of these phenomena, then gridded products may lead to incorrect conclusions because daily precipitation is a fractal field and hence any smoothing technique will dampen local extremes. To address this issue, we create a new probabilistic gridded product specifically designed to characterize the climatological properties of extreme precipitation by applying spatial statistical analyses to daily measurements of precipitation from the GHCN over CONUS. The essence of our method is to first estimate the climatology of extreme precipitation based on station data and then use a data-driven statistical approach to interpolate these estimates to a fine grid. We argue that our method yields an improved characterization of the climatology within a grid cell because the probabilistic behavior of extreme precipitation is much better behaved (i.e., smoother) than daily weather. Furthermore, the spatial smoothing innate to our approach significantly increases the signal-to-noise ratio in the estimated extreme statistics relative to an analysis without smoothing. Finally, by deriving a data-driven approach for translating extreme statistics to a spatially complete grid, the methodology outlined in this paper resolves the issue of how to properly compare station data with output from earth system models. We conclude the paper by comparing our probabilistic gridded product with a standard extreme value analysis of the Livneh gridded daily precipitation product.
Daily rainfall extremes and annual totals have increased in large parts of the global land area over the last decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently these global tenden
Precise and high-resolution carbon dioxide (CO$_2$) emission data is of great importance of achieving the carbon neutrality around the world. Here we present for the first time the near-real-time Global Gridded Daily CO$_2$ Emission Datasets (called
The gridding of daily accumulated precipitation -- especially extremes -- from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based o
Life-expectancy is a complex outcome driven by genetic, socio-demographic, environmental and geographic factors. Increasing socio-economic and health disparities in the United States are propagating the longevity-gap, making it a cause for concern. E
Weather forecasting is a long standing scientific challenge with direct social and economic impact. The task is suitable for deep neural networks due to vast amounts of continuously collected data and a rich spatial and temporal structure that presen