ترغب بنشر مسار تعليمي؟ اضغط هنا

Clusters Have Edges: The Projected Phase SpaceStructure of SDSS redMaPPer Clusters

151   0   0.0 ( 0 )
 نشر من قبل Paxton Tomooka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the distribution of line-of-sight velocities of galaxies in the vicinity of SDSS redMaPPer galaxy clusters. Based on their velocities, galaxies can be split into two categories: galaxies that are dynamically associated with the cluster, and random line-of-sight projections. Both the fraction of galaxies associated with the galaxy clusters, and the velocity dispersion of the same, exhibit a sharp feature as a function of radius. The feature occurs at a radial scale $R_{rm edge} approx 2.2R_{rm{lambda}}$, where $R_{rm{lambda}}$ is the cluster radius assigned by redMaPPer. We refer to $R_{rm edge}$ as the edge radius. These results are naturally explained by a model that further splits the galaxies dynamically associated with a galaxy cluster into a component of galaxies orbiting the halo and an infalling galaxy component. The edge radius $R_{rm edge}$ constitutes a true cluster edge, in the sense that no orbiting structures exist past this radius. A companion paper (Aung et al. 2020) tests whether the halo edge hypothesis holds when investigating the full three-dimensional phase space distribution of dark matter substructures in numerical simulations, and demonstrates that this radius coincides with a suitably defined splashback radius.

قيم البحث

اقرأ أيضاً

We improve upon the cosmological constraints derived from the abundance and weak-lensing data of redMaPPer clusters detected in the Sloan Digital Sky Survey (SDSS). Specifically, we derive gas mass data using Chandra X-ray follow-up of a complete sam ple of the 30 richest SDSS redMaPPer clusters with $zin[0.1,0.3]$, and use these additional data to improve upon the original analysis by Costanzi et al. (2019b). We simultaneously fit for the parameters of the richness-mass relation, the cluster gas mass-mass relation, and cosmology. By including our X-ray cluster sample in the SDSS cluster cosmology analysis, we measure $Omega_{rm m} = 0.25 pm 0.04$ and $sigma_8 = 0.85^{+0.06}_{-0.08}$. These constraints represent a 25.5% and 29.8% reduction in the size of the 68% confidence intervals of $Omega_{rm m}$ and $sigma_8$ respectively, relative to the constraints published in Costanzi et al. (2019b). Our cosmological constraints are in agreement with early universe results from Planck. As a byproduct of our analysis, we also perform an independent calibration of the amplitude of the $langle M_{rm gas}^{rm true}|M_{rm 500c}rangle$ scaling relation. Our calibration is consistent with and of comparable precision to that of Mantz et al. (2016b).
We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on SDSS-DR8, which contains 26 111 clusters up to z~0.6. The clusters are split into nine redshift and richness samples; in each of them we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z=0.3 and pivot richness lambda=30 is A_{IA}^{gen}=12.6_{-1.2}^{+1.5}. We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA.
We measure the velocity dispersions of clusters of galaxies selected by the redMaPPer algorithm in the first three years of data from the Dark Energy Survey (DES), allowing us to probe cluster selection and richness estimation, $lambda$, in light of cluster dynamics. Our sample consists of 126 clusters with sufficient spectroscopy for individual velocity dispersion estimates. We examine the correlations between cluster velocity dispersion, richness, X-ray temperature and luminosity as well as central galaxy velocity offsets. The velocity dispersion-richness relation exhibits a bimodal distribution. The majority of clusters follow scaling relations between velocity dispersion, richness, and X-ray properties similar to those found for previous samples; however, there is a significant population of clusters with velocity dispersions which are high for their richness. These clusters account for roughly 20% of the $lambda < 70$ systems in our sample, but more than half of $lambda < 70$ clusters at $z>0.5$. A couple of these systems are hot and X-ray bright as expected for massive clusters with richnesses that appear to have been underestimated, but most appear to have high velocity dispersions for their X-ray properties likely due to line-of-sight structure. These results suggest that projection effects contribute significantly to redMaPPer selection, particularly at higher redshifts and lower richnesses. The redMaPPer determined richnesses for the velocity dispersion outliers are consistent with their X-ray properties, but several are X-ray undetected and deeper data is needed to understand their nature.
In this work we study the shape of the projected surface mass density distribution of galaxy clusters using weak-lensing stacking techniques. In particular, we constrain the average aligned component of the projected ellipticity, $epsilon$, for a sam ple of redMaPPer clusters ($0.1 leq z < 0.4$). We consider six different proxies for the cluster orientation and measure $epsilon$ for three ranges of projected distances from the cluster centres. The mass distribution in the inner region (up to $700,$kpc) is better traced by the cluster galaxies with a higher membership probability, while the outer region (from $700,$kpc up to $5,$Mpc) is better traced by the inclusion of less probable galaxy cluster members. The fitted ellipticity in the inner region is $epsilon = 0.21 pm 0.04$, in agreement with previous estimates. We also study the relation between $epsilon$ and the cluster mean redshift and richness. By splitting the sample in two redshift ranges according to the median redshift, we obtain larger $epsilon$ values for clusters at higher redshifts, consistent with the expectation from simulations. In addition, we obtain higher ellipticity values in the outer region of clusters at low redshifts. We discuss several systematic effects that might affect the measured lensing ellipticities and their relation to the derived ellipticity of the mass distribution.
By way of the projected phase-space (PPS), we investigate the relation between galaxy properties and cluster environment in a subsample of groups from the Yang Catalog. The sample is split according to the gaussianity of the velocity distribution in the group into gaussian (G) and non-gaussian (NG). Our sample is limited to massive clusters with $rm M_{200} geq 10^{14} M_{odot}$ and $rm 0.03leq z leq 0.1$. NG clusters are more massive, less concentrated and have an excess of faint galaxies compared to G clusters. NG clusters show mixed distributions of galaxy properties in the PPS compared to the G case. Using the relation between infall time and locus on the PPS, we find that, on average, NG clusters accreted $rm sim 10^{11},M_{odot}$ more stellar mass in the last $sim 5$ Gyr than G clusters. The relation between galaxy properties and infall time is significantly different for galaxies in G and NG systems. The more mixed distribution in the PPS of NG clusters translates into shallower relations with infall time. Faint galaxies whose first crossing of the cluster virial radius happened 2-4 Gyr ago in NG clusters are older and more metal-rich than in G systems. All these results suggest that NG clusters experience a higher accretion of pre-processed galaxies, which characterizes G and NG clusters as different environments to study galaxy evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا