ﻻ يوجد ملخص باللغة العربية
By way of the projected phase-space (PPS), we investigate the relation between galaxy properties and cluster environment in a subsample of groups from the Yang Catalog. The sample is split according to the gaussianity of the velocity distribution in the group into gaussian (G) and non-gaussian (NG). Our sample is limited to massive clusters with $rm M_{200} geq 10^{14} M_{odot}$ and $rm 0.03leq z leq 0.1$. NG clusters are more massive, less concentrated and have an excess of faint galaxies compared to G clusters. NG clusters show mixed distributions of galaxy properties in the PPS compared to the G case. Using the relation between infall time and locus on the PPS, we find that, on average, NG clusters accreted $rm sim 10^{11},M_{odot}$ more stellar mass in the last $sim 5$ Gyr than G clusters. The relation between galaxy properties and infall time is significantly different for galaxies in G and NG systems. The more mixed distribution in the PPS of NG clusters translates into shallower relations with infall time. Faint galaxies whose first crossing of the cluster virial radius happened 2-4 Gyr ago in NG clusters are older and more metal-rich than in G systems. All these results suggest that NG clusters experience a higher accretion of pre-processed galaxies, which characterizes G and NG clusters as different environments to study galaxy evolution.
We measure the star formation quenching efficiency and timescale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed SDSS galaxies in and around clusters bas
Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in
We study the Gromov waist in the sense of $t$-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromovs
A detection of primordial non-Gaussianity could transform our understanding of the fundamental theory of inflation. The precision promised by upcoming CMB and large-scale structure surveys raises a natural question: if a detection given a particular
Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties o