ترغب بنشر مسار تعليمي؟ اضغط هنا

Scientific prospects for a mini-array of ASTRI telescopes: a gamma-ray TeV data challenge

104   0   0.0 ( 0 )
 نشر من قبل Fabio Pintore Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ASTRI is a project aiming at the realization of a gamma-ray imaging Cherenkov telescope that observes the sky in the TeV band. Recently, the development of a mini-array (MA) of ASTRI telescopes has been funded by the Istituto Nazionale di Astrofisica. The ASTRI Comprehensive Data Challenge (ACDC) project aims at optimizing the scientific exploitation and analysis techniques of the ASTRI MA, by performing a complete end-to-end simulation of a tentative scientific program, from the generation of suitable instrument response functions to the proposal, selection, analysis, and interpretation of the simulated data. We assumed that the MA will comprise nine ASTRI telescopes arranged in a (almost) square geometry (mean distance between telescopes of ~250m). We simulated three years of observations, adopting a realistic pointing plan that takes into account, for each field, visibility constraints for an assumed site in Paranal (Chile) and observational time slots in dark sky conditions. We simulated the observations of nineteen Galactic and extragalactic fields selected for their scientific interest, including several classes of objects (such as pulsar wind nebulae, supernova remnants, gamma-ray binaries etc), for a total of 81 point-like and extended sources. Here we present an overview of the ACDC project, providing details on the different software packages needed to carry out the simulated three-years operation of the ASTRI MA. We discuss the results of a systematic analysis applied on the whole simulated data, by making use of prototype science tools widely adopted by the TeV astronomical community. Furthermore, particular emphasis is also given to some targets used as benchmarks.

قيم البحث

اقرأ أيضاً

71 - N. La Palombara 2013
ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder confi guration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected performance and the possibility to realize a mini-array composed by a few small-size telescopes, which shall be placed at the final CTA Southern Site.
The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E>100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolutioerrorn and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE gamma-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays knee (E~10^15 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.
ASTRI is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Smal l Size Telescope in a dual-mirror configuration (SST-2M) for the Cherenkov Telescope Array (CTA), scheduled to start data acquisition in 2014. Although the ASTRI SST-2M prototype is mainly a technological demonstrator, it will perform scientific observations of the Crab Nebula, Mrk 421 and Mrk 501 at E>1 TeV. A remarkable improvement in terms of performance could come from the operation, in 2016, of a SST-2M mini-array, composed of a few SST-2M telescopes to be placed at final CTA Southern Site. The SST mini-array will be able to study in great detail relatively bright sources (a few x 10E-12 erg/cm2/s at 10 TeV) with angular resolution of a few arcmin and energy resolution of about 10-15%. Thanks to the stereo approach, it will be possible to verify the wide field of view (FoV) performance through the detections of very high-energy showers with core located at a distance up to 500 m, to compare the mini-array performance with the Monte Carlo expectations by means of deep observations of selected targets, and to perform the first CTA science at the beginning of the mini-array operations. Prominent sources such as extreme blazars, nearby well-known BL Lac objects and radio-galaxies, galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range, in order to investigate the electron acceleration and cooling, relativistic and non relativistic shocks, the search for cosmic-ray (CR) Pevatrons, the study of the CR propagation, and the impact of the extragalactic background light on the spectra of the sources.
The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array (MA) project is an international collaboration led by the Italian National Institute for Astrophysics (INAF). ASTRI MA is composed of nine Cherenkov telescopes operating in the energy range 1-100 TeV, and it aims to study very high-energy gamma ray astrophysics and optical intensity interferometry of bright stars. ASTRI MA is currently under construction, and will be installed at the site of the Teide Observatory in Tenerife (Spain). The hardware and software system that is responsible of monitoring and controlling all the operations carried out at the ASTRI MA site is the Supervision Control and Data Acquisition (SCADA). The LOgging UnifieD (LOUD) subsystem is one of the main components of SCADA. It provides the service responsible for collecting, filtering, exposing and storing log events collected by all the array elements (telescopes, LIDAR, devices, etc.). In this paper, we present the LOUD architecture and the software stack explicitly designed for distributed computing environments exploiting Internet of Things technologies (IoT).
The Cherenkov Telescope Array (CTA) will consist of an array of three types of telescopes covering a wide energy range, from tens of GeV up to more than 100 TeV. The high energy section (> 3 TeV) will be covered by the Small Size Telescopes (SST). AS TRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Research and Education led by INAF, aiming at the design and construction of a prototype of the Dual Mirror SST. In a second phase the ASTRI project foresees the installation of the first elements of the SST array at the CTA southern site, a mini-array of 5-7 telescopes. The optimization of the layout of this mini-array embedded in the SST array of the CTA Observatory has been the object of an intense simulation effort. In this work we present the expected mini-array performance in terms of energy threshold, angular and energy resolution and sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا