ترغب بنشر مسار تعليمي؟ اضغط هنا

The ASTRI Mini-Array Science Case

142   0   0.0 ( 0 )
 نشر من قبل Stefano Vercellone
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ASTRI is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size Telescope in a dual-mirror configuration (SST-2M) for the Cherenkov Telescope Array (CTA), scheduled to start data acquisition in 2014. Although the ASTRI SST-2M prototype is mainly a technological demonstrator, it will perform scientific observations of the Crab Nebula, Mrk 421 and Mrk 501 at E>1 TeV. A remarkable improvement in terms of performance could come from the operation, in 2016, of a SST-2M mini-array, composed of a few SST-2M telescopes to be placed at final CTA Southern Site. The SST mini-array will be able to study in great detail relatively bright sources (a few x 10E-12 erg/cm2/s at 10 TeV) with angular resolution of a few arcmin and energy resolution of about 10-15%. Thanks to the stereo approach, it will be possible to verify the wide field of view (FoV) performance through the detections of very high-energy showers with core located at a distance up to 500 m, to compare the mini-array performance with the Monte Carlo expectations by means of deep observations of selected targets, and to perform the first CTA science at the beginning of the mini-array operations. Prominent sources such as extreme blazars, nearby well-known BL Lac objects and radio-galaxies, galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range, in order to investigate the electron acceleration and cooling, relativistic and non relativistic shocks, the search for cosmic-ray (CR) Pevatrons, the study of the CR propagation, and the impact of the extragalactic background light on the spectra of the sources.



قيم البحث

اقرأ أيضاً

The Cherenkov Telescope Array (CTA) will consist of an array of three types of telescopes covering a wide energy range, from tens of GeV up to more than 100 TeV. The high energy section (> 3 TeV) will be covered by the Small Size Telescopes (SST). AS TRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Research and Education led by INAF, aiming at the design and construction of a prototype of the Dual Mirror SST. In a second phase the ASTRI project foresees the installation of the first elements of the SST array at the CTA southern site, a mini-array of 5-7 telescopes. The optimization of the layout of this mini-array embedded in the SST array of the CTA Observatory has been the object of an intense simulation effort. In this work we present the expected mini-array performance in terms of energy threshold, angular and energy resolution and sensitivity.
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Main goals of the ASTRI pr oject are the realization of an end-to-end prototype of a Small Size Telescope (SST) for the Cherenkov Telescope Array (CTA) in a dual-mirror configuration (SST-2M) and, subsequently, of a mini-array composed of a few SST-2M telescopes to be placed at the final CTA Southern Site. Here we present the main features of the Mini-Array Software System (MASS) that has a central role in the success of the ASTRI Project and will also serve as a prototype for the CTA software system. The MASS will provide a set of tools to prepare an observing proposal, to perform the observations specified therein (monitoring and controlling all the hardware components of each telescope), to analyze the acquired data online and to store/retrieve all the data products to/from the archive.}
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1-100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10-15%, is well suited to study relatively bright sources (a few $times 10^{-12}$erg cm$^{-2}$s$^{-1}$ at 10 TeV) at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC) and future high-altitude extensive air-shower detectors.
The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array (MA) project is an international collaboration led by the Italian National Institute for Astrophysics (INAF). ASTRI MA is composed of nine Cherenkov telescopes operating in the energy range 1-100 TeV, and it aims to study very high-energy gamma ray astrophysics and optical intensity interferometry of bright stars. ASTRI MA is currently under construction, and will be installed at the site of the Teide Observatory in Tenerife (Spain). The hardware and software system that is responsible of monitoring and controlling all the operations carried out at the ASTRI MA site is the Supervision Control and Data Acquisition (SCADA). The LOgging UnifieD (LOUD) subsystem is one of the main components of SCADA. It provides the service responsible for collecting, filtering, exposing and storing log events collected by all the array elements (telescopes, LIDAR, devices, etc.). In this paper, we present the LOUD architecture and the software stack explicitly designed for distributed computing environments exploiting Internet of Things technologies (IoT).
The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E>100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolutioerrorn and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE gamma-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays knee (E~10^15 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا