ترغب بنشر مسار تعليمي؟ اضغط هنا

The ASTRI Project: a mini-array of dual-mirror small Cherenkov telescopes for CTA

136   0   0.0 ( 0 )
 نشر من قبل Nicola La Palombara
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. La Palombara




اسأل ChatGPT حول البحث

ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder configuration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected performance and the possibility to realize a mini-array composed by a few small-size telescopes, which shall be placed at the final CTA Southern Site.



قيم البحث

اقرأ أيضاً

ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide field of view (9.6 degrees in diameter) e nd-to-end prototype of the CTA small-size telescope (SST), devoted to the investigation of the energy range from a fraction of TeV up to tens of TeVs, and scheduled to start data acquisition in 2014. For the first time, a dual-mirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope, in order to obtain a compact optical configuration. A second challenging, but innovative technical solution consists of a modular focal surface camera based on Silicon photo-multipliers with a logical pixel size of 6.2mm x 6.2mm. Here we describe the current status of the project, the expected performance, and its possible evolution in terms of an SST mini-array. This CTA-SST precursor, composed of a few SSTs and developed in collaboration with CTA international partners, could not only peruse the technological solutions adopted by ASTRI, but also address a few scientific test cases that are discussed in detail.
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily) of an end-to-end dual-mirror prototype of the CTA small size telescope (SST) and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1-100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10-15%, is well suited to study relatively bright sources (a few $times 10^{-12}$erg cm$^{-2}$s$^{-1}$ at 10 TeV) at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC) and future high-altitude extensive air-shower detectors.
In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These wil l allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana, Italy/INAF), GATE (Gamma-ray Telescope Elements, France/Paris Observ.) and CHEC (Compact High Energy Camera, universities in UK, US and Japan) which are merging their efforts in order to finalize an end-to-end design that will be constructed for CTA. A number of prototype structures and cameras are being developed in order to investigate various alternative designs. In this contribution, these designs are presented, along with the technological solutions under study.
65 - A. Porcelli , W. Bilnik 2015
The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy ($>$ few TeV) coverage. The SST-1M c ontains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SST-1M telescope is described, as well as the interface between the telescope abstraction to the CTA central control and the data acquisition system.
114 - M. L. Ahnen , D. Baack , M. Balbo 2016
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these nee ds, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflectors aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا