ﻻ يوجد ملخص باللغة العربية
One of the most intriguing topological features of open systems is exhibiting exceptional point (EP) singularities. Apart from the widely explored second-order EPs (EP2s), the explorations of higher-order EPs in any system requires more complex topology, which is still a challenge. Here, we encounter a third-order EP (EP3) for the first time in a simple fabrication feasible gain-loss assisted optical microcavity. Using scattering-matrix formalism, we study the simultaneous interactions between three successive coupled states around two EP2s, which yield an EP3. Following an adiabatic parametric variation around the identified EP3, we present a robust successive-state-conversion mechanism among three coupled states. The proposed scheme indeed opens a unique platform to manipulate light in integrated devices.
Gain and loss modulation are ubiquitous in nature. An exceptional point arises when both the eigenvectors and eigenvalues coalesce, which in a physical system can be achieved by engineering the gain and loss coefficients, leading to a wide variety of
An experimental setup of three coupled $mathcal{PT}$-symmetric wave guides showing the characteristics of a third-order exceptional point (EP3) has been investigated in an idealized model of three delta-functions wave guides in W.~D. Heiss and G.~Wun
We study theoretical models of three coupled wave guides with a $mathcal{PT}$-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it
Dynamical encirclement of an Exceptional Point (EP) and corresponding time-asymmetric mode evolution properties due to breakdown in adiabatic theorem have been a key to range of exotic physical effects in various open atomic, molecular and optical sy
Exceptional points (EPs), i.e., non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce, can be realized by tuning the gain/loss contrast of different modes in non-Hermitian systems or by engineering the asymmetric coupling of modes