ﻻ يوجد ملخص باللغة العربية
Gain and loss modulation are ubiquitous in nature. An exceptional point arises when both the eigenvectors and eigenvalues coalesce, which in a physical system can be achieved by engineering the gain and loss coefficients, leading to a wide variety of counter-intuitive phenomena. In this work we demonstrate the existence of an exceptional point in an exciton polariton condensate in a double-well potential. Remarkably, near the exceptional point, the polariton condensate localized in one potential well can be switched off by an additional optical excitation in the other well with very low (far below threshold) laser power which surprisingly induces additional loss into the system. Increasing the power of the additional laser leads to a situation in which gain dominates in both wells again, such that the polaritons re-condense with almost the same density in the two potential wells. Our results offer a simple way to optically manipulate the polariton lasing process in a double-well potential structure. Extending such configuration to complex potential well lattices offers exciting prospects to explore high-order exceptional points and non-Hermitian topological photonics in a non-equilibrium many-body system.
One of the most intriguing topological features of open systems is exhibiting exceptional point (EP) singularities. Apart from the widely explored second-order EPs (EP2s), the explorations of higher-order EPs in any system requires more complex topol
Atomically thin transition metal dichalcogenides possess valley dependent functionalities that are usually available only at crogenic temperatures, constrained by various valley depolarization scatterings. The formation of exciton polaritons by coher
We consider a two-dimensional nonlinear waveguide with distributed gain and losses. The optical potential describing the system consists of an unperturbed complex potential depending only on one transverse coordinate, i.e., corresponding to a planar
Recent advances in non-Hermitian physical systems have led to numerous novel optical phenomena and applications. However, most realizations are limited to classical systems and quantum fluctuations of light is unexplored. For the first time, we repor
The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations r