ﻻ يوجد ملخص باللغة العربية
An experimental setup of three coupled $mathcal{PT}$-symmetric wave guides showing the characteristics of a third-order exceptional point (EP3) has been investigated in an idealized model of three delta-functions wave guides in W.~D. Heiss and G.~Wunner, J. Phys. A 49, 495303 (2016). Here we extend these investigations to realistic, extended wave guide systems. We place major focus on the strong parameter sensitivity rendering the discovery of an EP3 a challenging task. We also investigate the vicinity of the EP3 for further branch points of either cubic or square root type behavior.
We study theoretical models of three coupled wave guides with a $mathcal{PT}$-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it
We study interaction of a soliton in a parity-time (PT) symmetric coupler which has local perturbation of the coupling constant. Such a defect does not change the PT-symmetry of the system, but locally can achieve the exceptional point. We found that
We theoretically explore the role of mesoscopic fluctuations and noise on the spectral and temporal properties of systems of $mathcal{PT}$-symmetric coupled gain-loss resonators operating near the exceptional point, where eigenvalues and eigenvectors
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d
We report the spectral features of a phase-shifted parity and time ($mathcal{PT}$)-symmetric fiber Bragg grating (PPTFBG) and demonstrate its functionality as a demultiplexer in the unbroken $mathcal{PT}$-symmetric regime. The length of the proposed