ﻻ يوجد ملخص باللغة العربية
An important task in the Internet of Things (IoT) is field monitoring, where multiple IoT nodes take measurements and communicate them to the base station or the cloud for processing, inference, and analysis. This communication becomes costly when the measurements are high-dimensional (e.g., videos or time-series data). The IoT networks with limited bandwidth and low power devices may not be able to support such frequent transmissions with high data rates. To ensure communication efficiency, this article proposes to model the measurement compression at IoT nodes and the inference at the base station or cloud as a deep neural network (DNN). We propose a new framework where the data to be transmitted from nodes are the intermediate outputs of a layer of the DNN. We show how to learn the model parameters of the DNN and study the trade-off between the communication rate and the inference accuracy. The experimental results show that we can save approximately 96% transmissions with only a degradation of 2.5% in inference accuracy. Our findings have the potentiality to enable many new IoT data analysis applications generating large amount of measurements.
Industrial Internet of Things (IIoT) revolutionizes the future manufacturing facilities by integrating the Internet of Things technologies into industrial settings. With the deployment of massive IIoT devices, it is difficult for the wireless network
In this paper, we propose a machine learning process for clustering large-scale social Internet-of-things (SIoT) devices into several groups of related devices sharing strong relations. To this end, we generate undirected weighted graphs based on the
In the Internet-of-Things, the number of connected devices is expected to be extremely huge, i.e., more than a couple of ten billion. It is however well-known that the security for the Internet-of-Things is still open problem. In particular, it is di
Deep Neural Network (DNN) has gained unprecedented performance due to its automated feature extraction capability. This high order performance leads to significant incorporation of DNN models in different Internet of Things (IoT) applications in the
The freshness of status updates is imperative in mission-critical Internet of things (IoT) applications. Recently, Age of Information (AoI) has been proposed to measure the freshness of updates at the receiver. However, AoI only characterizes the fre