ﻻ يوجد ملخص باللغة العربية
The freshness of status updates is imperative in mission-critical Internet of things (IoT) applications. Recently, Age of Information (AoI) has been proposed to measure the freshness of updates at the receiver. However, AoI only characterizes the freshness over time, but ignores the freshness in the content. In this paper, we introduce a new performance metric, Age of Changed Information (AoCI), which captures both the passage of time and the change of information content. Also, we examine the AoCI in a time-slotted status update system, where a sensor samples the physical process and transmits the update packets with a cost. We formulate a Markov Decision Process (MDP) to find the optimal updating policy that minimizes the weighted sum of the AoCI and the update cost. Particularly, in a special case that the physical process is modeled by a two-state discrete time Markov chain with equal transition probability, we show that the optimal policy is of threshold type with respect to the AoCI and derive the closed-form of the threshold. Finally, simulations are conducted to exhibit the performance of the threshold policy and its superiority over the zero-wait baseline policy.
Age of information (AoI), a notion that measures the information freshness, is an essential performance measure for time-critical applications in Internet of Things (IoT). With the surge of computing resources at the IoT devices, it is possible to pr
We summarize recent contributions in the broad area of age of information (AoI). In particular, we describe the current state of the art in the design and optimization of low-latency cyberphysical systems and applications in which sources send time-s
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) de
We consider a communication system in which status updates arrive at a source node, and should be transmitted through a network to the intended destination node. The status updates are samples of a random process under observation, transmitted as pac
In this paper, we adopt the fluid limits to analyze Age of Information (AoI) in a wireless multiaccess network with many users. We consider the case wherein users have heterogeneous i.i.d. channel conditions and the statuses are generate-at-will. Con