ﻻ يوجد ملخص باللغة العربية
Omnidirectional applications are immersive and highly interactive, which can improve the efficiency of remote collaborative work among factory workers. The transmission of omnidirectional video (OV) is the most important step in implementing virtual remote collaboration. Compared with the ordinary video transmission, OV transmission requires more bandwidth, which is still a huge burden even under 5G networks. The tile-based scheme can reduce bandwidth consumption. However, it neither accurately obtain the field of view(FOV) area, nor difficult to support real-time OV streaming. In this paper, we propose an edge-assisted viewport adaptive scheme (EVAS-OV) to reduce bandwidth consumption during real-time OV transmission. First, EVAS-OV uses a Gated Recurrent Unit(GRU) model to predict users viewport. Then, users were divided into multicast clusters thereby further reducing the consumption of computing resources. EVAS-OV reprojects OV frames to accurately obtain users FOV area from pixel level and adopt a redundant strategy to reduce the impact of viewport prediction errors. All computing tasks were offloaded to edge servers to reduce the transmission delay and improve bandwidth utilization. Experimental results show that EVAS-OV can save more than 60% of bandwidth compared with the non-viewport adaptive scheme. Compared to a two-layer scheme with viewport adaptive, EVAS-OV still saves 30% of bandwidth.
Regular omnidirectional video encoding technics use map projection to flatten a scene from a spherical shape into one or several 2D shapes. Common projection methods including equirectangular and cubic projection have varying levels of interpolation
Immersive video offers the freedom to navigate inside virtualized environment. Instead of streaming the bulky immersive videos entirely, a viewport (also referred to as field of view, FoV) adaptive streaming is preferred. We often stream the high-qua
With the increasing demands on interactive video applications, how to adapt video bit rate to avoid network congestion has become critical, since congestion results in self-inflicted delay and packet loss which deteriorate the quality of real-time vi
We consider an interactive multiview video streaming (IMVS) system where clients select their preferred viewpoint in a given navigation window. To provide high quality IMVS, many high quality views should be transmitted to the clients. However, this
In this paper, we formulate the collaborative multi-user wireless video transmission problem as a multi-user Markov decision process (MUMDP) by explicitly considering the users heterogeneous video traffic characteristics, time-varying network conditi