ﻻ يوجد ملخص باللغة العربية
With the increasing demands on interactive video applications, how to adapt video bit rate to avoid network congestion has become critical, since congestion results in self-inflicted delay and packet loss which deteriorate the quality of real-time video service. The existing congestion control is hard to simultaneously achieve low latency, high throughput, good adaptability and fair bandwidth allocation, mainly because of the hardwired control strategy and egocentric convergence objective. To address these issues, we propose an end-to-end statistical learning based congestion control, named Iris. By exploring the underlying principles of self-inflicted delay, we reveal that congestion delay is determined by sending rate, receiving rate and network status, which inspires us to control video bit rate using a statistical-learning congestion control model. The key idea of Iris is to force all flows to converge to the same queue load, and adjust the bit rate by the model. All flows keep a small and fixed number of packets queuing in the network, thus the fair bandwidth allocation and low latency are both achieved. Besides, the adjustment step size of sending rate is updated by online learning, to better adapt to dynamically changing networks. We carried out extensive experiments to evaluate the performance of Iris, with the implementations of transport layer (UDP) and application layer (QUIC) respectively. The testing environment includes emulated network, real-world Internet and commercial LTE networks. Compared against TCP flavors and state-of-the-art protocols, Iris is able to achieve high bandwidth utilization, low latency and good fairness concurrently. Especially over QUIC, Iris is able to increase the video bitrate up to 25%, and PSNR up to 1dB.
Bandwidth estimation and congestion control for real-time communications (i.e., audio and video conferencing) remains a difficult problem, despite many years of research. Achieving high quality of experience (QoE) for end users requires continual upd
Due to the presence of buffers in the inner network nodes, each congestion event leads to buffer queueing and thus to an increasing end-to-end delay. In the case of delay sensitive applications, a large delay might not be acceptable and a solution to
Omnidirectional applications are immersive and highly interactive, which can improve the efficiency of remote collaborative work among factory workers. The transmission of omnidirectional video (OV) is the most important step in implementing virtual
In this article, we study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user. This is done by controlling multiple unmanned aerial vehicles (UAVs) in real time while avoiding inter-UAV collision
In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle